• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南岭半坑高分异A型花岗岩成因及其地质意义

    何川 刘文斌 胡文洁 陈露 李海立 孙建东 王运 田世洪

    何川, 刘文斌, 胡文洁, 陈露, 李海立, 孙建东, 王运, 田世洪, 2025. 南岭半坑高分异A型花岗岩成因及其地质意义. 地球科学, 50(7): 2525-2547. doi: 10.3799/dqkx.2024.158
    引用本文: 何川, 刘文斌, 胡文洁, 陈露, 李海立, 孙建东, 王运, 田世洪, 2025. 南岭半坑高分异A型花岗岩成因及其地质意义. 地球科学, 50(7): 2525-2547. doi: 10.3799/dqkx.2024.158
    He Chuan, Liu Wenbin, Hu Wenjie, Chen Lu, Li Haili, Sun Jiandong, Wang Yun, Tian Shihong, 2025. Petrogenesis and Geological Significance of Highly Differentiated A⁃Type Granites in Bankeng Pluton, Nanling Region, South China. Earth Science, 50(7): 2525-2547. doi: 10.3799/dqkx.2024.158
    Citation: He Chuan, Liu Wenbin, Hu Wenjie, Chen Lu, Li Haili, Sun Jiandong, Wang Yun, Tian Shihong, 2025. Petrogenesis and Geological Significance of Highly Differentiated A⁃Type Granites in Bankeng Pluton, Nanling Region, South China. Earth Science, 50(7): 2525-2547. doi: 10.3799/dqkx.2024.158

    南岭半坑高分异A型花岗岩成因及其地质意义

    doi: 10.3799/dqkx.2024.158
    基金项目: 

    自然资源部离子型稀土资源与环境重点实验室开放基金 2022IRERE102

    中国地质调查项目 DD20240066

    自然资源部深地科学与探测技术实验室开放课题 Sino Probe Lab 202217

    江西省“双千计划”创新领军人才长期项目 2020101003

    江西省自然科学基金重点项目 20224ACB203011

    东华理工大学高层次人才引进配套经费 1410000874

    详细信息
      作者简介:

      何川(1990—),男,博士,讲师,主要从事花岗岩成因及相关的稀有、稀土关键金属成矿作用研究. ORCID:0009-0007-4595-9742. E-mail:hechuankd@163.com

      通讯作者:

      田世洪, E-mail: s.h.tian@163.com

    • 中图分类号: P588.12

    Petrogenesis and Geological Significance of Highly Differentiated A⁃Type Granites in Bankeng Pluton, Nanling Region, South China

    • 摘要:

      我国稀土资源丰富,其中华南离子吸附型稀土矿床独具特色,其时空分布特征显示其形成与华南中生代花岗岩密切有关,但内在成因联系仍缺乏深刻认识.对南岭半坑花岗岩(半坑稀土矿床的成矿母岩)开展了岩相学、锆石和磷灰石年代学、岩石地球化学、锆石Hf同位素和全岩Sr⁃Nd⁃Li同位素等综合研究.半坑花岗岩中岩浆锆石、岩浆磷灰石的U⁃Pb年代学分析结果分别为185.5~194.0 Ma和~189.2 Ma,表明其侵位形成于早侏罗世.矿物组成主要由长英质矿物(Q+Ab+ Or≥95%)组成,镁铁质暗色矿物仅有少量黑云母(< 5%);岩石地球化学特征呈现高SiO2(75.93%~77.48%)、富K2O(5.27%~5.55%)、低MgO(0.09%~0.14%)、贫MnO(0.02%~0.03%),较高的锆饱和温度(801~847 ℃)和高Zr+Nb+Ce+Y含量(360×10‒6~534×10‒6)和10 000×Ga/Al比值(3.2~4.2)等,表明其具有高分异A型花岗岩的属性.Sr⁃Nd⁃Hf⁃Li同位素特征((87Sr/86Sr)i=0.704 477~0.712 715,εNdt)=-5.0~-5.2,εHft)=-6.8~+1.4,δ7Li=-0.88‰~6.65‰)表明其岩浆源区可能为中元古代古老地壳物质熔融并侵位于地壳浅部的富集轻稀土的火成岩.半坑花岗岩呈现A2型花岗岩属性(Y/Nb=1.21~2.09),结合区域同期的双峰式侵入岩、火山岩组合和A型花岗岩共同指示其形成于早侏罗世伸展构造背景.结合与半坑花岗岩同期的南岭地区A型花岗岩的成因认识,认为早侏罗世深部软流圈上涌产生的热异常,引起壳‒幔岩浆源区富稀土岩石的部分熔融形成更加富集稀土的A型花岗质熔体,可能是华南离子吸附型轻稀土矿床成矿母岩形成的重要机制之一.富轻稀土的半坑花岗岩与富重稀土的足洞花岗岩的成因对比表明轻稀土型成矿母岩的形成主要受控于岩浆源区与伸展构造背景,而岩浆结晶分异程度和外部流体交代作用对重稀土型成矿母岩的形成更为关键.

       

    • 图  1  华南中生代花岗岩与离子吸附型稀土矿床的空间分布

      Jiang et al.(2022)Chu et al.(2024)修改. 底图来自自然资源部标准地图服务系统,底图审图号为GS(2016)1569号

      Fig.  1.  Map showing the distribution of Mesozoic granites and ion-adsorbed rare earth element deposits in South China

      图  2  江西省龙南地区地质简图

      据江西省重工业局和广东省地质局,1970,区域地质矿产调查报告(龙南幅,1∶200 000)

      Fig.  2.  Geological sketch map of the Longnan area, Jiangxi

      图  3  半坑花岗岩岩石学特征

      a.半坑黑云母钾长花岗岩风化壳照片;b.手标本照片;c.单偏光显微照片;d.正交偏光显微照片. 矿物代号:Q.石英;Kfs.钾长石;Mc.微斜长石;Bt.黑云母;Zrn.锆石;Aln.褐帘石;Ap.磷灰石;Ep.绿帘石

      Fig.  3.  Petrological characteristics of the Bankeng granite

      图  4  半坑花岗岩中锆石矿物特征与U⁃Pb年龄

      a.锆石透射光照片;b.锆石阴极发光照片,实线圆代表LA-MC-ICPMS U-Pb年龄激光束斑位置,虚线圆代表LA-MC-ICPMS Hf同位素激光束斑位置;c.锆石稀土配分曲线,球粒陨石标准数据分别引自Boynton(1984);d.锆石U-Pb年龄

      Fig.  4.  Mineral characteristics of zircon in the Bankeng granite and its U⁃Pb age

      图  5  半坑花岗岩中磷灰石矿物特征与U⁃Pb年龄

      a.磷灰石透射光照片;b.磷灰石阴极发光照片,实线圆代表LA-ICPMS U-Pb年龄激光束斑位置;c.磷灰石稀土配分曲线,球粒陨石标准数据分别引自Boynton(1984),I型、S型花岗岩稀土曲线区域据Sha and Chappell(1999);d.磷灰石U⁃Pb年龄

      Fig.  5.  Mineral characteristics of apatite in the Bankeng granite and and its U⁃Pb age

      图  6  半坑花岗岩锆石Hf同位素特征

      Fig.  6.  Zircon Hf isotope characteristics of the Bankeng granites

      图  7  半坑花岗岩的主量元素特征

      a.(Na2O+K2O)vs. SiO2(底图据Middlemost,1994);b. K2O vs.SiO2(底图据Peccerillo and Taylor,1976);c.A/NK vs.A/CNK(底图据Maniar and Piccoli,1989);d.FeOT/(FeOT+MgO)vs. SiO2(底图据Frost et al., 2001). 1.南岭J1辉长‒辉绿岩(数据来自Li et al., 2003Xie et al., 2005Hsieh et al., 2008He et al., 2010Zhu et al., 2010Jiang et al., 2015Wang et al., 2015Gan et al., 2017aZhang et al., 2018Yang et al., 2021);2.南岭J1正长岩(数据来自Li et al., 2003Chen et al., 2005He et al., 2010Yang et al., 2021);3.南岭J1 A型花岗岩(数据来自Li et al., 2003Chen et al., 2005He et al., 2010Zhu et al., 2010Jiang et al., 201520172022甘成势等,2016Gan et al., 2017b2022Zhou et al., 2018Yang et al., 2021Zhao et al., 2021);4.半坑花岗岩(本文数据)

      Fig.  7.  Major element characteristics of the Bankeng granite

      图  8  (a)球粒陨石标准化的稀土元素配分图与(b)原始地幔标准化的微量元素蛛网图

      球粒陨石、原始地幔标准数据分别引自Boynton(1984)Sun and McDonough(1989). 1.南岭J1 A型花岗岩(数据来自Li et al., 2003Chen et al., 2005He et al., 2010Zhu et al., 2010Jiang et al., 201520172022甘成势等,2016Gan et al., 2017b2022Zhou et al., 2018Yang et al., 2021Zhao et al., 2021);2.半坑花岗岩(本文数据)

      Fig.  8.  (a) Chondrite-normalized REE patterns and (b) primitive-mantle-normalized trace element patterns

      图  9  半坑花岗岩Sr⁃Nd同位素特征

      图a底图据Jiang et al., 2017. 1.南岭J1辉长‒辉绿岩(数据来自Li et al., 2003Xie et al., 2005Hsieh et al., 2008He et al., 2010Zhu et al., 2010Jiang et al., 2015Wang et al., 2015Gan et al., 2017aZhang et al., 2018Yang et al., 2021);2.南岭J1正长岩(数据来自Li et al., 2003Chen et al., 2005Yang et al., 2021);3.南岭J1 A型花岗岩(数据来自Li et al., 2003Chen et al., 2005He et al., 2010Zhu et al., 2010Jiang et al., 201520172022甘成势等,2016Gan et al., 2017b2022Zhou et al., 2018Yang et al., 2021Zhao et al., 2021);4.半坑花岗岩(本文数据)

      Fig.  9.  Sr⁃Nd isotope characteristics of the Bankeng granite

      图  10  半坑花岗岩Li同位素特征

      1.地幔岩石(数据来自Magna et al., 2006Lai et al.,2015);2.下地壳岩石(数据来自Teng et al., 2008);;3.中地壳岩石(数据来自Teng et al., 2008);4.上地壳岩石(数据来自Sauzéat et al., 2015);5.碱性A型花岗岩(数据来自Teng et al., 2009);6.铝质A型花岗岩(数据来自Teng et al.,2009);7.半坑花岗岩(本文数据)

      Fig.  10.  Li isotopes characteristics of the Bankeng granite

      图  11  半坑花岗岩的岩石成因判别图解

      a.锆饱和温度TzrWatson and Harrison,1983计算,I型、S型和A型TzrKing et al., 2001;b.据Whalen et al., 1987;c.据吴福元等,2017;d.底图据Wang et al., 2012. 1.南岭J1 A型花岗岩(数据来自Li et al.,2003Chen et al., 2005He et al., 2010Zhu et al., 2010Jiang et al., 201520172022甘成势等,2016Gan et al., 2017b2022Zhou et al., 2018Yang et al., 2021Zhao et al., 2021);2.半坑花岗岩(本文数据)

      Fig.  11.  Petrogenetic discrimination diagrams of the Bankeng granite

      图  12  A型花岗岩分类图解

      底图据Eby(1992). 1.南岭J1 A型花岗岩(数据来自Li et al., 2003Chen et al., 2005He et al., 2010Zhu et al., 2010Jiang et al., 201520172022甘成势等,2016Gan et al., 2017b2022Zhou et al., 2018Yang et al., 2021Zhao et al., 2021);2.半坑花岗岩(本文数据)

      Fig.  12.  Classification diagram of A-type granite

      图  13  成矿母岩中稀土含量与岩浆分异程度的相关关系

      1.南岭J1 A型花岗岩(数据来自Li et al., 2003Chen et al., 2005He et al., 2010Zhu et al., 2010Jiang et al., 201520172022甘成势等,2016Gan et al., 2017b2022Zhou et al., 2018Yang et al., 2021Zhao et al., 2021);2. 半坑花岗岩(本文数据);3.足洞花岗闪长岩(数据来自Fan et al., 2023);4.足洞二云母花岗岩(数据来自Fan et al., 2023);5足洞白云母碱长花岗岩(数据来自Li et al., 2019Fan et al., 2023

      Fig.  13.  The correlation between the REEY contents in the ore-forming parent rock and the differentiation degree of magma

      图  14  南岭东部地区早侏罗世岩浆作用模式(a);半坑花岗岩成因模式(b)

      Fig.  14.  Diagram of Early Jurassic magmatism in the eastern Nanling region (a); diagram of origin and REE pre-enrichment of Bankeng granite (b)

    • Bao, Z. W., Zhao, Z. H., 2008. Geochemistry of Mineralization with Exchangeable REY in the Weathering Crusts of Granitic Rocks in South China. Ore Geology Reviews, 33(3-4): 519-535. https://doi.org/10.1016/j.oregeorev.2007.03.005
      Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Cen, T., Li, W. X., Wang, X. C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256-257: 311-330. https://doi.org/10.1016/j.lithos.2016.03.022
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      Chen, B. F., Zou, X. Y., Peng, L. L., et al., 2019. Geological Characteristics and Prospecting Direction of the Metamorphic Rock Ion-Adsorption REE Ore Deposit in South Jiangxi. East China Geology, 40(2): 143-151 (in Chinese with English abstract).
      Chen, P. R., Zhou, X. M., Zhang, W. L., et al., 2005. Petrogenesis and Significance of Early Yanshanian Syenite-Granite Complex in Eastern Nanling Range. Science China Earth Sciences, 48(7): 912-924. https://doi.org/10.1360/03yd0384
      Chu, G. B., Chen, H. Y., Feng, Y. Z., et al., 2024. Are South China Granites Special in Forming Ion- Adsorption REE Deposits? Gondwana Research, 125: 82-90. https://doi.org/10.1016/j.gr.2023.08.010
      Chu, M. F., Wang, K. L., Griffin, W. L., et al., 2009. Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids. Journal of Petrology, 50(10): 1829-1855. https://doi.org/10.1093/petrology/egp054
      Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895
      Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2023. A-Type Granites in Space and Time: Relationship to the Supercontinent Cycle and Mantle Events. Earth and Planetary Science Letters, 610: 118125. https://doi.org/10.1016/j.epsl.2023.118125
      Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163-166. https://doi.org/10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2 doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      European Commission, 2014. Report on Critical Raw Materials for the Eu: Report of the Ad Hoc Working Group on Defining Critical Raw Materials. 1-41. https://rmis.jrc.ec.europa.eu/uploads/crm-report-on-critical-raw-materials_en.pdf
      Fan, C. X., Xu, C., Shi, A. G., et al., 2023. Origin of Heavy Rare Earth Elements in Highly Fractionated Peraluminous Granites. Geochimica et Cosmochimica Acta, 343: 371-383. https://doi.org/10.1016/j.gca.2022.12.019
      Frost, C. D., Frost, B. R., 1997. Reduced Rapakivi-Type Granites: The Tholeiite Connection. Geology, 25(7): 647-650. https://doi.org/10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
      Fu, W., Li, X. T., Feng, Y. Y., et al., 2019a. Chemical Weathering of S-Type Granite and Formation of Rare Earth Element (REE)-Rich Regolith in South China: Critical Control of Lithology. Chemical Geology, 520: 33-51. https://doi.org/10.1016/j.chemgeo.2019.05.006
      Fu, W., Luo, P., Hu, Z. Y., et al., 2019b. Enrichment of Ion-Exchangeable Rare Earth Elements by Felsic Volcanic Rock Weathering in South China: Genetic Mechanism and Formation Preference. Ore Geology Reviews, 114: 103120. https://doi.org/10.1016/j.oregeorev.2019.103120
      Fu, W., Zhao, Q., Luo, P., et al., 2022. Mineralization Diversity of Ion-Adsorption Type REE Deposit in Southern China and the Critical Influence of Parent Rocks. Acta Geologica Sinica, 96(11): 3901-3925 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.11.016
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gan, C. S., Wang, Y. J., Cai, Y. F., et al., 2016. The Petrogenesis and Tectonic Implication of Wengong Intrusion in the Nanling Range. Earth Science, 41(1): 17-34 (in Chinese with English abstract).
      Gan, C. S., Wang, Y. J., Qian, X., et al., 2017a. Constraints of the Xialan Gabbroic Intrusion in the Eastern Nanling Range on the Early Jurassic Intra-Continental Extension in Eastern South China. Journal of Asian Earth Sciences, 145: 576-590. https://doi.org/10.1016/j.jseaes.2017.06.023
      Gan, C. S., Wang, Y. J., Zhang, Y. Z, et al., 2017b. The Earliest Jurassic A-Type Granite in the Nanling Range of Southeastern South China: Petrogenesis and Geological Implications. International Geology Review, 59(3): 274-292. https://doi.org/10.1080/00206814.2016.1254574
      Gan, C. S., Wang, Y. J., Zhang, Y. Z., et al., 2022. Early Jurassic High εNd(t)-εHf(t) Granites in the Southeastern South China Block: Early Jurassic Crustal Growth or Crustal Reworking? Journal of Asian Earth Sciences, 223: 104995. https://doi.org/10.1016/j.jseaes.2021.104995
      He, C., Xu, C., Zhao, Z., et al., 2017. Petrogenesis and Mineralization of REE-Rich Granites in Qingxi and Guanxi, Nanling Region, South China. Ore Geology Reviews, 81: 309-325. https://doi.org/10.1016/j.oregeorev.2016.10.021
      He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.04.010
      Hou, Z. Q., Liu, Y., Tian, S. H., et al., 2015. Formation of Carbonatite-Related Giant Rare-Earth-Element Deposits by the Recycling of Marine Sediments. Scientific Reports, 5: 10231. https://doi.org/10.1038/srep10231
      Hsieh, P. S., Chen, C. H., Yang, H. J., et al., 2008. Petrogenesis of the Nanling Mountains Granites from South China: Constraints from Systematic Apatite Geochemistry and Whole-Rock Geochemical and Sr-Nd Isotope Compositions. Journal of Asian Earth Sciences, 33(5-6): 428-451. https://doi.org/10.1016/j.jseaes.2008.02.002
      Huang, Y. F., He, H. P., Liang, X. L., et al., 2021. Characteristics and Genesis of Ion Adsorption Type REE Deposits in the Weathering Crusts of Metamorphic Rocks in Ningdu, Ganzhou, China. Ore Geology Reviews, 135: 104173. https://doi.org/10.1016/j.oregeorev.2021.104173
      Jiang, Y. H., Liu, Y. C., Han, B. N., et al., 2022. Contrasting Origins of A-Type Granites in the Late Triassic-Early Jurassic Pitou Complex, Southern Jiangxi Province: Implications for Mesozoic Tectonic Evolution in South China. Lithos, 426-427: 106794. https://doi.org/10.1016/j.lithos.2022.106794
      Jiang, Y. H., Wang, G. C., Liu, Z., et al., 2015. Repeated Slab Advance-Retreat of the Palaeo-Pacific Plate underneath SE China. International Geology Review, 57(4): 472-491. https://doi.org/10.1080/00206814.2015.1017775
      Jiang, Y. H., Wang, G. C., Qing, L., et al., 2017. Early Jurassic A-Type Granites in Southeast China: Shallow Dehydration Melting of Early Paleozoic Granitoids by Basaltic Magma Intraplating. The Journal of Geology, 125(3): 351-366. https://doi.org/10.1086/691242
      Kerr, A., Fryer, B. J., 1993. Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. https://doi.org/10.1016/0009-2541(93)90141-5
      King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A‐Type Granites the High‐Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
      Ladenburger, S., Marks, M. A. W., Upton, B., et al., 2016. Compositional Variation of Apatite from Rift- Related Alkaline Igneous Rocks of the Gardar Province, South Greenland. American Mineralogist, 101(3): 612-626. https://doi.org/10.2138/am-2016-5443
      Lai, Y. J., von Strandmann, P. A. E., Dohmen, R., et al., 2015. The Influence of Melt Infiltration on the Li and Mg Isotopic Composition of the Horoman Peridotite Massif. Geochimica et Cosmochimica Acta, 164: 318-332. https://doi.org/10.1016/j.gca.2015.05.006
      Lechler, P. J., Desilets, M. O., 1987. A Review of the Use of Loss on Ignition as a Measurement of Total Volatiles in Whole-Rock Analysis. Chemical Geology, 63(3-4): 341-344. https://doi.org/10.1016/0009-2541(87)90171-9
      Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 240: 64-79. https://doi.org/10.1016/j.gca.2018.08.021
      Li, M. Y. H., Zhou, M. F., Williams-Jones, A. E., 2019. The Genesis of Regolith-Hosted Heavy Rare Earth Element Deposits: Insights from the World-Class Zudong Deposit in Jiangxi Province, South China. Economic Geology, 114(3): 541-568. https://doi.org/10.5382/econgeo.4642
      Li, N. B., Niu, H. C., Shan, Q., et al., 2022. Subducted Sediment Contributions to REE Deposits Recorded by Alkaline Mafic Dikes in the Lizhuang REE Deposit, Panxi Area, Southwest China. Ore Geology Reviews, 140: 104567. https://doi.org/10.1016/j.oregeorev.2021.104567
      Li, X. H., Chen, Z. G., Liu, D. Y., et al., 2003. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance. International Geology Review, 45(10): 898-921. https://doi.org/10.2747/0020-6814.45.10.898
      Li, Y. H. M., Zhao, W. W., Zhou, M. F., 2017. Nature of Parent Rocks, Mineralization Styles and Ore Genesis of Regolith-Hosted REE Deposits in South China: An Integrated Genetic Model. Journal of Asian Earth Sciences, 148: 65-95. https://doi.org/10.1016/j.jseaes.2017.08.004
      Liu, H. B., Chen, B. F., Peng, L. L., et al., 2020. Characteristics and Genesis of the Ion Adsorption REE Deposit in Jiangbei Metamorphic Weathering Crust, Southern Jiangxi Province. East China Geology, 41(4): 315-324 (in Chinese with English abstract).
      Liu, J. X., Wang, S., Wang, X. L., et al., 2020. Refining the Spatio-Temporal Distributions of Mesozoic Granitoids and Volcanic Rocks in SE China. Journal of Asian Earth Sciences, 201: 104503. https://doi.org/10.1016/j.jseaes.2020.104503
      Liu, P., Gleeson, S. A., Cook, N. J., et al., 2023a. Final Assembly of Gondwana Enhances Crustal Metal (HREE and U) Endowment. Geochemical Perspectives Letters, 26: 7-13. https://doi.org/10.7185/geochemlet.2317
      Liu, S. L., Fan, H. R., Liu, X., et al., 2023b. Global Rare Earth Elements Projects: New Developments and Supply Chains. Ore Geology Reviews, 157: 105428. https://doi.org/10.1016/j.oregeorev.2023.105428
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 25-32.
      Magna, T., Wiechert, U., Halliday, A. N., 2006. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 243(3-4): 336-353. https://doi.org/10.1016/j.epsl.2006.01.005
      Mushkin, A., Navon, O., Halicz, L., et al. 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      O'Sullivan, G., Chew, D., Kenny, G., et al., 2020. The Trace Element Composition of Apatite and Its Application to Detrital Provenance Studies. Earth-Science Reviews, 201: 103044. https://doi.org/10.1016/j.earscirev.2019.103044
      Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc- Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
      Poller, U., Huth, J., Hoppe, P., et al., 2001. REE, U, Th, and Hf Distribution in Zircon from Western Carpathian Variscan Granitoids: A Combined Cathodoluminescence and Ion Microprobe Study. American Journal of Science, 301(10): 858-876. https://doi.org/10.2475/ajs.301.10.858
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Rudnick, R. L., Taylor, S. R., 1987. The Composition and Petrogenesis of the Lower Crust: A Xenolith Study. Journal of Geophysical Research: Solid Earth, 92(B13): 13981-14005. https://doi.org/10.1029/JB092iB13p13981
      Sanematsu, K., Watanabe, Y., 2016. Characteristics and Genesis of Ion Adsorption-Type Rare Earth Element Deposits. In: Verplanck, P. L., Hitzman, M. W., eds., Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton, 55-79. https://doi.org/10.5382/rev.18.03
      Sauzéat, L., Rudnick, R. L., Chauvel, C., et al., 2015. New Perspectives on the Li Isotopic Composition of the Upper Continental Crust and Its Weathering Signature. Earth and Planetary Science Letters, 428: 181-192. https://doi.org/10.1016/j.epsl.2015.07.032
      Sha, L. K., Chappell, B. W., 1999. Apatite Chemical Composition, Determined by Electron Microprobe and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. https://doi.org/10.1016/S0016-7037(99)00210-0
      Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. https://doi.org/10.1007/s00410-004-0632-9
      Skjerlie, K. P., Johnston, A. D., 1992. Vapor-Absent Melting at 10 kbar of a Biotite- and Amphibole-bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263-266. https://doi.org/10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
      Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821X(75)90088-6
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006a. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498. https://doi.org/10.2138/am.2006.2083
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006b. Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3-4): 701-710. https://doi.org/10.1016/j.epsl.2006.01.036
      Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009
      Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3-4): 370-379. https://doi.org/10.1016/j.chemgeo.2009.02.009
      Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low-Damage Apatite U-Pb Dating Using Laser Ablation-Multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): 1-23. https://doi.org/10.1029/2011GC003928
      Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153-195. https://doi.org/10.2138/gsrmg.55.1.153
      Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-X
      U. S. Geological Survey, 2024. Mineral Commodity Summaries 2024. U. S. Geological Survey, Reston. https://10.3133/mcs2024 doi: 10.3133/mcs2024
      Wang, D. H., Zhao, Z., Yu, Y., et al., 2018. Exploration and Research Progress on Ion-Adsorption Type REE Deposit in South China. China Geology, 1(3): 415-424. https://doi.org/10.31035/cg2018022
      Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008
      Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-, S- and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, C. Y., 1988. The Study of Ion-Adsorbed Type of Rare Earth Deposits in Weathering Crust from South Jiangxi and North Guangdong Provinces (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Wu, C. Y., Bai, G., Huang, D. H., et al., 1992. Characteristics and Significance of HREE-Rich Granitoids of the Nanling Mountain Area. Acta Geoscientica Sinica, 25: 43-58 (in Chinese with English abstract).
      Wu, C. Y., Huang, D. H., Bai, G., et al., 1990. Differentiation of Rare Earth Elements and Origin of Granitic Rocks, Nanling Mountain Area. Acta Petrologica et Mineralogica, 9(2): 106-116, 189 (in Chinese with English abstract).
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese).
      Xie, G. Q., Mao, J. W., Hu, R. Z., et al., 2005. Jurassic Intraplate Basaltic Magmatism in Southeast China: Evidence from Geological and Geochemical Characteristics of the Chebu Gabbroite in Southern Jiangxi Province. Acta Geologica Sinica (English Edition), 79(5): 662-672. https://doi.org/10.1111/j.1755-6724.2005.tb00922.x
      Xie, Y. L., Hou, Z. Q., Goldfarb, R. J., et al., 2016. Rare Earth Element Deposits in China. Reviews in Economic Geology, 18: 115-136. https://pubs.usgs.gov/publication/70189245 https://pubs.usgs.gov/publication/70189245
      Xie, Y. L., Verplanck, P. L., Hou, Z. Q., et al., 2019. Rare Earth Element Deposits in China: A Review and New Understandings. In: Chang, Z. S., Goldfarb, R. J., eds., Mineral Deposits of China. Society of Economic Geologists, 509-552. https://doi.org/10.5382/sp.22.12
      Xu, C., Kynický, J., Smith, M. P., et al., 2017. Origin of Heavy Rare Earth Mineralization in South China. Nature Communications, 8: 14598. https://doi.org/10.1038/ncomms14598
      Xu, X. B., 2023. Late Triassic to Middle Jurassic Tectonic Evolution of the South China Block: Geodynamic Transition from the Paleo-Tethys to the Paleo-Pacific Regimes. Earth-Science Reviews, 241: 104404. https://doi.org/10.1016/j.earscirev.2023.104404
      Yang, J. H., Zhang, J. H., Chen, J. Y., et al., 2021. Mesozoic Continental Crustal Rejuvenation of South China: Insights from Zircon Hf-O Isotopes of Early Jurassic Gabbros, Syenites and A-Type Granites. Lithos, 402-403: 105678. https://doi.org/10.1016/j.lithos.2020.105678
      Yu, J. H., Cai, Y. F., Sun, T., et al., 2023. Distribution and Enrichment of Rare Metal Elements in the Basement Rocks of South China: Controls on Rare-Metal Mineralization. Ore Geology Reviews, 163: 105797. https://doi.org/10.1016/j.oregeorev.2023.105797
      Zhang, D., Zhao, K. D., Chen, W., et al., 2018. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308-309: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028
      Zhang, D. F., Cao, M. X., Gong, X., et al., 2024. Geological Characteristics of Metallogenic Host Rock and Their Genetic Significance of Shitouping Heavy Rare Earth Deposit in Southern Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(4): 338-348 (in Chinese with English abstract).
      Zhang, Q., Chen, B. F., Zhang, X. W., 2020. Geological, Geochemical Characteristics and Significance of Fengshan HREE Deposit in Ganxian District, Jiangxi Province. East China Geology, 41(4): 359-367 (in Chinese with English abstract).
      Zhao, J. L., Qiu, J. S., Liu, L., 2021. Early-Middle Jurassic Magmatic Rocks along the Coastal Region of Southeastern China: Petrogenesis and Implications for Paleo-Pacific Plate Subduction. Journal of Asian Earth Sciences, 210: 104687. https://doi.org/10.1016/j.jseaes.2021.104687
      Zhao, Z., Wang, D. H., Bagas, L., et al., 2022. Geochemical and REE Mineralogical Characteristics of the Zhaibei Granite in Jiangxi Province, Southern China, and a Model for the Genesis of Ion-Adsorption REE Deposits. Ore Geology Reviews, 140: 104579. https://doi.org/10.1016/j.oregeorev.2021.104579
      Zhao, Z., Wang, D. H., Chen, Z. Y., et al., 2014. Zircon U-Pb Age, Endogenic Mineralization and Petrogenesis of Rare Earth Ore-Bearing Granite in Longnan, Jiangxi Province. Acta Geoscientica Sinica, 35(6): 719-725 (in Chinese with English abstract).
      Zhong, F. J., Xia, F., Wang, L., et al., 2023. Geochronology and Geochemistry of Dolerite in the Lujing Uranium Ore Field of Central Zhuguangshan Complex, and Its Relationship with Uranium Mineralization. Acta Geologica Sinica, 97(8): 2593-2608 (in Chinese with English abstract).
      Zhou, M. F., Li, X. X., Wang, Z. C., et al., 2020. The Genesis of Regolith-Hosted Rare Earth Element and Scandium deposits: Current Understanding and Outlook to Future Prospecting. Chinese Science Bulletin, 65(33): 3809-3824 (in Chinese).
      Zhou, X. G., Wang, S. L., Yuan, C. X., et al., 2018. Geochemistry Characteristics of Ion-Absorbed Rare Earth Deposits in Low-Grade Metamorphic Rock in the Ningdu Area, Southern Jiangxi Province and Its Prospecting Significance. East China Geology, 39(3): 194-201 (in Chinese with English abstract).
      Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      Zhou, Z. M., Ma, C. Q., Wang, L. X., et al., 2018. A Source-Depleted Early Jurassic Granitic Pluton from South China: Implication to the Mesozoic Juvenile Accretion of the South China Crust. Lithos, 300-301: 278-290. https://doi.org/10.1016/j.lithos.2017.11.017
      Zhu, W. G., Zhong, H., Chen, X., et al., 2020. The Earliest Jurassic A-Type Rhyolites and High-Mg Andesites-Dacites in Southern Jiangxi Province, Southeast China: Evidence for Delamination of a Flat-Slab? Lithos, 358-359: 105403. https://doi.org/10.1016/j.lithos.2020.105403
      Zhu, W. G., Zhong, H., Huang, H. Q., et al., 2021. The Origin of the Earliest Jurassic Basaltic Rocks in Southern Jiangxi Province, Southeastern China: Implications for Interaction between the Asthenosphere and Metasomatised Lithosphere. Lithos, 404-405: 106444. https://doi.org/10.1016/j.lithos.2021.106444
      Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic-Ultramafic Intrusion and A-Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3-4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005
      Zhu, X. X., Liu, Y., Hou, Z. Q., 2023. Massive Rare Earth Element Storage in Sub-Continental Lithospheric Mantle Initiated by Diapirism, not by Melting. Geology, 52(2): 105-109. https://doi.org/10.1130/G51102.1
      陈斌锋, 邹新勇, 彭琳琳, 等, 2019. 赣南地区变质岩离子吸附型稀土矿床地质特征及找矿方向. 华东地质, 40(2): 143-151.
      付伟, 赵芹, 罗鹏, 等, 2022. 中国南方离子吸附型稀土矿床成矿类型及其母岩控矿因素探讨. 地质学报, 96(11): 3901-3925. doi: 10.3969/j.issn.0001-5717.2022.11.016
      甘成势, 王岳军, 蔡永丰, 等, 2016. 南岭地区温公岩体的岩石成因及其构造指示. 地球科学, 41(1): 17-34. doi: 10.3799/dqkx.2016.002
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      刘海波, 陈斌锋, 彭琳琳, 等, 2020. 赣南江贝变质岩风化壳离子吸附型稀土矿床特征及成因. 华东地质, 41(4): 315-324.
      吴澄宇, 1988. 赣南粤北地区风化壳离子吸附型稀土矿床研究(博士学位论文). 北京: 中国地质科学院.
      吴澄宇, 白鸽, 黄典豪, 等, 1992. 南岭富重稀土花岗岩类的特征和意义. 中国地质科学院院报, 25: 43-58.
      吴澄宇, 黄典豪, 白鸽, 等, 1990. 南岭花岗岩类起源与稀土元素的分馏. 岩石矿物学杂志, 9(2): 106-116, 189.
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      张德富, 曹明轩, 龚兴, 等, 2024. 赣南石头坪重稀土矿床赋矿母岩地质特征及成矿意义探讨. 东华理工大学学报(自然科学版), 47(4): 338-348.
      张青, 陈斌锋, 张兴文, 2020. 江西赣县峰山重稀土矿床地质、地球化学特征及意义. 华东地质, 41(4): 359-367.
      赵芝, 王登红, 陈振宇, 等, 2014. 江西龙南稀土花岗岩的锆石U-Pb年龄、内生矿化特征及成因讨论. 地球学报, 35(6): 719-725.
      钟福军, 夏菲, 王玲, 等, 2023. 诸广中部鹿井铀矿田辉绿岩磷灰石U-Pb年龄、地球化学特征及其与铀成矿关系. 地质学报, 97(8): 2593-2608.
      周美夫, 李欣禧, 王振朝, 等, 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望. 科学通报, 65(33): 3809-3824.
      周雪桂, 王水龙, 袁承先, 等, 2018. 赣南宁都地区变质岩离子吸附型稀土矿床地球化学特征及找矿意义. 华东地质, 39(3): 194-201.
    • 加载中
    图(14)
    计量
    • 文章访问数:  229
    • HTML全文浏览量:  18
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-27
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回