• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果

    邵延秀 王爱生 刘静 王文鑫 韩龙飞 邢麟杰 许建红 王霁川 姚文倩 张惠心 刘小利

    邵延秀, 王爱生, 刘静, 王文鑫, 韩龙飞, 邢麟杰, 许建红, 王霁川, 姚文倩, 张惠心, 刘小利, 2025. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学, 50(5): 1677-1695. doi: 10.3799/dqkx.2025.040
    引用本文: 邵延秀, 王爱生, 刘静, 王文鑫, 韩龙飞, 邢麟杰, 许建红, 王霁川, 姚文倩, 张惠心, 刘小利, 2025. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学, 50(5): 1677-1695. doi: 10.3799/dqkx.2025.040
    Shao Yanxiu, Wang Aisheng, Liu ZengJing, Wang Wenxin, Han Longfei, Xing Linjie, Xu Jianhong, Wang Jichuan, Yao Wenqian, Zhang Huixin, Liu Xiaoli, 2025. Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang. Earth Science, 50(5): 1677-1695. doi: 10.3799/dqkx.2025.040
    Citation: Shao Yanxiu, Wang Aisheng, Liu ZengJing, Wang Wenxin, Han Longfei, Xing Linjie, Xu Jianhong, Wang Jichuan, Yao Wenqian, Zhang Huixin, Liu Xiaoli, 2025. Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang. Earth Science, 50(5): 1677-1695. doi: 10.3799/dqkx.2025.040

    2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果

    doi: 10.3799/dqkx.2025.040
    基金项目: 

    国家自然科学基金 42272242

    国家自然科学基金 W2411033

    中国地震局地质研究所所长基金重点项目 JB-18-02

    地震动力学与强震预测全国重点实验室项目 LED2022A03

    详细信息
      作者简介:

      邵延秀(1984-),副教授,主要从事活动构造和构造地貌研究. E-mail:shaoyx@tju.edu.cn

      通讯作者:

      刘静,E-mail: liu_zeng@tju.edu.cn

    • 中图分类号: P65

    Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang

    • 摘要:

      2025年1月7日在西藏日喀则地区定日县境内发生MS6.8地震,地震发生后,我们立即对发震构造和地表破裂开展了野外调查和高精度无人机航测.基于野外地震破裂带调查和遥感数据初步解译,我们发现定日地震发震断裂为登么错(又称丁木错)断裂,并破裂了该断裂的中北段,最北到羊姆丁错姆湖的东岸,最南到朋曲河北岸,地表破裂长度约36.5 km.该地震的地表破裂基本沿着先存断裂分布;在破裂南端,多条平行断裂上出现地表陡坎,最大破裂宽度~4 km.地表破裂样式复杂多样,主要形成不同高度和宽度的地震陡坎和拉张裂缝的组合,且破裂带的北段陡坎较大,最大垂直位移(265±27)cm,陡坎高度沿走向变化较大,在两端仅为垂直位移不明显的张裂隙.本研究初步获得地表破裂长度和最大位移等参数与全球正断型地震的矩震级‒地表破裂参数经验关系的平均值较为一致.同时,定日地震的地表破裂特征也为研究单次地震陡坎与长期累积陡坎的地貌演化过程研究提供了难得的数据.

       

    • 图  1  西藏中南部地震构造

      Fig.  1.  Seismic tectonic map of central and southern Xizang

      图  2  定日地震发震构造及余震分布

      余震来源于 杨婷等(2025)精定位数据,粗黑色线条为登么错断裂

      Fig.  2.  Seismic tectonics and aftershock distribution map of the Dingri earthquake

      图  3  定日地震地表破裂野外调查

      a.野外调查点的分布;b.地表破裂带的展布

      Fig.  3.  Field investigation of surface rupture of the Dingri earthquake

      图  4  定日地震尼辖错一带地表破裂宏观特征

      a.无人机倾斜拍摄的航片;b,c. 从不同角度拍摄破裂带形态特征

      Fig.  4.  Macroscopic features of surface rupture in the Nixia Co of the Dingri earthquake

      图  5  定日地震南北端破裂带特征

      a,b. 羊姆丁错姆东岸沿断裂分布的地表裂缝航片;a. 红色虚线为先存断裂;b.中箭头指示的是裂缝的位置;c.朋曲河北岸地表裂缝,红色箭头指示先存断层陡坎位置,白色箭头指示裂缝位置;d.登么错西南地表裂缝,白色箭头指示裂缝位置

      Fig.  5.  Characteristics of the rupture zones at the northern and southern ends of the Dingri earthquake

      图  6  定日地震地表破裂变形样式

      a.多条平行地震陡坎;b.地表破裂前缘发生挤压缩短变形,左上角插图修改自Crone et al.(1987);c.正向和反向断裂形成小型地堑;d.登么错西南次级断裂沿铲形断层面发生破裂

      Fig.  6.  Surface rupture deformation patterns of the Dingri earthquake

      图  7  定日地震断层面倾角测量

      a.在尼辖错一带在坍塌面上残留的断层擦痕;b.在登么错东岸在同震变形时暴露出来的新鲜断层面

      Fig.  7.  Fault plane dip angle measurement of the Dingri earthquake

      图  8  定日地震同震破裂垂直位移测量方法

      陡坎类型Ⅰ为上下盘以垮塌面相接触,地表均未垮塌,下部可能有少量垮塌(a);类型Ⅱ为上下盘有一定的拉张分量,地表未垮塌(b);类型Ⅲ为上下盘有一定的拉张分量,地表有垮塌(c);红色粗线为断层面;FW. 断层下盘;HW. 断层上盘;h. 陡坎垂直位移,其值为野外卷尺测量值加上误差,此处我们对3种类型给定误差为5%(a),10%(b)和15%~20%(c)

      Fig.  8.  Measurement method for the vertical displacement of co-seismic ruptures of the Dingri earthquake

      图  9  定日地震野外同震位移测量

      白色编号为野外调查点号,白色垂直箭头指示地震陡坎高度

      Fig.  9.  Co-seismic displacement measurement of the Dingri earthquake in the field

      图  10  全球正断型地震破裂参数关系(修改自Wells and Coppersmith,1994

      a.震级‒地表破裂长度经验关系;b.震级‒地下破裂长度经验关系;c.震级‒最大同震位移经验关系.橘红色正方形为定日地震,各个图中两条拟合直线分别为Wells and Coppersmith(1994)给出的两个关系式.MW. 矩震级;SRL. 地表破裂长度;RLD. 地下破裂长度;MD. 最大同震位移

      Fig.  10.  Relationship of rupture parameters for global normal fault-type earthquakes (modified from Wells and Coppersmith, 1994)

      表  1  不同机构给出的定日地震震源机制解

      Table  1.   The earthquake source mechanism of the Dingri earthquake by different institutions

      来源 纬度 经度 深度(km) 震级(MW 节面Ⅰ(°) 节面Ⅱ(°)
      走向 倾角 滑动角 走向 倾角 滑动角
      CENC1 28.59°N 87.33°E 15 7.1 348 40 -100 181 51 -81
      张喆2 28.49°N 87.47°E 10 7 346 49 -95 174 42 -85
      GCMT3 28.56°N 87.47°E 12 7.1 356 42 -88 173 48 -92
      USGS4 28.573°N 87.375°E 11.5 7.05 349 42 -103 187 49 -78
      IPGP5 28.639°N 87.361°E 14 7.2 341 51 -113 196 44 -64
      GFZ6 28.57°N 87.41°E 14 7.1 0 49 -79 164 41 -102
      SC47 28.53°N 87.40°E 12 7.1 342 29 -116 191 64 -76
      AUST8 28.603°N 87.402°E 11 7 355 50 -87 169 40 -94
      GSRAS9 28.62°N 87.46°E 10 7.1 353 45 -88 171 45 -92
      注:1.CENC中国地震台网中心(https://www.cenc.ac.cn/cenc/tpxw/414670/index.html);2.张喆中国地震局地球物理研究所(https://www.cea-igp.ac.cn/kydt/280883.html);3.GCMT:全球矩心矩张量(https://www.globalcmt.org/);4.USGS美国地质调查局(https://earthquake.usgs.gov/earthquakes/eventpage/us6000pi9w/moment-tensor);5.IPGP巴黎地球物理研究所(http://geoscope.ipgp.fr/index.php/en/catalog/earthquake-description?seis=us6000pi9w22212);6.GFZ德国地球科学研究中心(https://geofon.gfz.de/eqinfo/event.php?id=gfz2025albe);7.SC4欧洲‒地中海地震中心(https://www.emsc-csem.org/Earthquake_information/earthquake.php?id=1753287);8.AUST澳大利亚地球物理科学协会(https://earthquakes.ga.gov.au/);9.GSRAS俄罗斯科学院地球物理调查局(http://mseism.gsras.ru/EqInfo/RequestsHandler?cmd=toinfmsg&lang=en&imid=276
      下载: 导出CSV
    • An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62-66. https://doi.org/10.1038/35075035
      Andrews, D. J., Hanks, T. C., 1985. Scarp Degraded by Linear diffusion: Inverse Solution for Age. Journal of Geophysical Research: Solid Earth, 90(B12): 10193-10208. https://doi.org/10.1029/jb090ib12p10193
      Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right-Lateral Strike-Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. https://doi.org/10.1029/jb094ib03p02787
      Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803
      Arrowsmith, J. R., Pollard, D. D., Rhodes, D. D., 1996. Hillslope Development in Areas of Active Tectonics. Journal of Geophysical Research: Solid Earth, 101(B3): 6255-6275. https://doi.org/10.1029/95jb02583
      Avouac, J. P., Peltzer, G., 1993. Active Tectonics in Southern Xinjiang, China: Analysis of Terrace Riser and Normal Fault Scarp Degradation along the Hotan-Qira Fault System. Journal of Geophysical Research: Solid Earth, 98(B12): 21773-21807. https://doi.org/10.1029/93jb02172
      Baize, S., Blumetti, A. M., Boncio, P., et al., 2021. A New Release of the SURE Database of Earthquake Surface Ruptures Suited to Fault Displacement Hazard Analysis. The 23rd EGU General Assembly, Vienna, EGU21-14182. https://doi.org/10.5194/egusphere-egu21-14182, 2021. doi: 10.5194/egusphere-egu21-14182,2021
      Baize, S., Nurminen, F., Sarmiento, A., et al., 2020. A Worldwide and Unified Database of Surface Ruptures (SURE) for Fault Displacement Hazard Analyses. Seismological Research Letters, 91(1): 499-520. https://doi.org/10.1785/0220190144
      Bi, H. Y., Zheng, W. J., Zeng, J. Y., et al., 2017. Application of SFM Photogrammetry Method to the Quantitative Study of Active Tectonics. Seismology and Geology, 39(4): 656-674 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2017.04.003
      Bie, L. D., González, P. J., Rietbrock, A., 2017. Slip Distribution of the 2015 Lefkada Earthquake and Its Implications for Fault Segmentation. Geophysical Journal International, 210(1): 420-427. https://doi.org/10.1093/gji/ggx171
      Chen, Q. Z., Freymueller, J. T., Yang, Z. Q., et al., 2004. Spatially Variable Extension in Southern Tibet Based on GPS Measurements. Journal of Geophysical Research: Solid Earth, 109(B9): 2002JB002350. https://doi.org/10.1029/2002jb002350
      Chen, W. S., 2004a. 1999 Chi-Chi Earthquake: A Case Study on the Role of Thrust-Ramp Structures for Generating Earthquakes. Bulletin of the Seismological Society of America, 91(5): 986-994. https://doi.org/10.1785/0120000731
      Chen, Y. G., 2004b. Surface Rupture of 1999 Chi-Chi Earthquake Yields Insights on Active Tectonics of Central Taiwan. Bulletin of the Seismological Society of America, 91(5): 977-985. https://doi.org/10.1785/0120000721
      Cheng, J., Rong, Y. F., Magistrale, H., et al., 2017. An Mw-Based Historical Earthquake Catalog for Mainland China. Bulletin of the Seismological Society of America, 107(5): 2490-2500. https://doi.org/10.1785/0120170102
      Crone, A. J., Haller, K. M., 1991. Segmentation and the Coseismic Behavior of Basin and Range Normal Faults: Examples from East-Central Idaho and Southwestern Montana, U. S. A. Journal of Structural Geology, 13(2): 151-164. https://doi.org/10.1016/0191-8141(91)90063-O
      Crone, A. J., Machette, M. N., Bonilla, M. G., et al., 1987. Surface Faulting Accompanying the Borah Peak Earthquake and Segmentation of the Lost River Fault, Central Idaho. Bulletin of the Seismological Society of America, 77(3): 739-770.
      Cubrinovski, M., Robinson, K., Taylor, M., et al., 2012. Lateral Spreading and Its Impacts in Urban Areas in the 2010-2011 Christchurch Earthquakes. New Zealand Journal of Geology and Geophysics, 55(3): 255-269. https://doi.org/10.1080/00288306.2012.699895
      Du, J. J., Li, D. P., Wang, Y. F., et al., 2017. Late Quaternary Activity of the Huashan Piedmont Fault and Associated Hazards in the Southeastern Weihe Graben, Central China. Acta Geologica Sinica, 91(1): 76-92. https://doi.org/10.1111/1755-6724.13064
      Ewiak, O., Victor, P., Oncken, O., 2015. Investigating Multiple Fault Rupture at the Salar Del Carmen Segment of the Atacama Fault System (Northern Chile): Fault Scarp Morphology and Knickpoint Analysis: Multiple Fault Rupture Geomorphology. Tectonics, 34(2): 187-212. https://doi.org/10.1002/2014tc003599
      Feng, X., Ma, J., Zhou, Y., et al., 2020. Geomorphology and Paleoseismology of the Weinan Fault, Shaanxi, Central China, and the Source of the 1556 Huaxian Earthquake. Journal of Geophysical Research (Solid Earth), 125(12): e2019JB017848. https://doi.org/10.1029/2019JB017848
      Guo, J., Zheng, J., Guan, B., et al., 2012. Coseismic Surface Rupture Structures Associated with 2010 MS7.1 Yushu Earthquake, China. Seismological Research Letters, 83(1): 109-118. https://doi.org/10.1785/gssrl.83.1.109
      Haeussler, P. J., 2004. Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M7.9 Earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B): S23-S52. https://doi.org/10.1785/0120040626
      Han, L. F., Liu-Zeng, J., Yao, W. Q., et al., 2022. Detailed Mapping of the Surface Rupture Near the Epicenter Segment of the 2021 Madoi Mw7.4 Earthquake and Discussion on Distributed Rupture in the Step-Over. Seismology and Geology, 44(2): 484-505 (in Chinese with English abstract).
      Hanks, T. C., 2013. The Age of Scarplike Landforms from Diffusion-Equation Analysis. Quaternary Geochronology. American Geophysical Union, Washington, D. C., 313-338. https://doi.org/10.1029/rf004p0313
      Hanks, T. C., Bucknam, R. C., Lajoie, K. R., et al., 1984. Modification of Wave-Cut and Faulting- Controlled Landforms. Journal of Geophysical Research: Solid Earth, 89(B7): 5771-5790. https://doi.org/10.1029/jb089ib07p05771
      Hanks, T. C., Wallace, R. E., 1985. Morphological Analysis of the Lake Lahontan Shoreline and Beachfront Fault Scarps, Pershing County, Nevada. Bulletin of the Seismological Society of America, 75(3): 835-846. https://doi.org/10.1785/BSSA0750030835
      Heron, A. M., 1922. Geological Results of the Mount Everest Expedition, 1921. The Geographical Journal, 59(6): 418. https://doi.org/10.2307/1780634
      Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range: Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models. Tectonics, 29(2): TC2014. https://doi.org/10.1029/2009TC002551
      Klinger, Y., 2010. Relation between Continental Strike-Slip Earthquake Segmentation and Thickness of the Crust. Journal of Geophysical Research: Solid Earth, 115(B7): 2009JB006550. https://doi.org/10.1029/2009jb006550
      Klinger, Y., Michel, R., King, G. C. P., 2006. Evidence for an Earthquake Barrier Model from MW∼7.8 Kokoxili (Tibet) Earthquake Slip-Distribution. Earth and Planetary Science Letters, 242(3/4): 354-364. https://doi.org/10.1016/j.epsl.2005.12.003
      Leloup, P. H., Mahéo, G., Arnaud, N., et al., 2010. The South Tibet Detachment Shear Zone in the Dinggye Area Time Constraints on Extrusion Models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16. https://doi.org/10.1016/j.epsl.2009.12.035
      Li, C. Y., Pang, J. Z., Zhang, Z. Q., 2012. Characteristics, Geometry, and Segmentation of the Surface Rupture Associated with the 14 April 2010 Yushu Earthquake, Eastern Tibet, China. Bulletin of the Seismological Society of America, 102(4): 1618-1638. https://doi.org/10.1785/0120110261
      Li, H. B., Pan, J. W., Lin, A. M., et al., 2016. Coseismic Surface Ruptures Associated with the 2014 MW6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau. Bulletin of the Seismological Society of America, 106(2): 595-608. https://doi.org/10.1785/0120150136
      Li, J. J., Fang, X. M., 1998. Study on the Uplift and Environmental Change of the Tibetan Plateau. Chinese Science Bulletin, 43(15): 1569-1574 (in Chinese). doi: 10.1360/csb1998-43-15-1569
      Li, J. J., Wen, S. X., Zhang, Q. S., et al., 1979. Discussion on the Era, Amplitude and Form of the Uplift of the Tibetan Plateau. Scientia Sinica, 9(6): 608-616 (in Chinese).
      Li, K., Li, Y. S., Tapponnier, P., et al., 2021. Joint InSAR and Field Constraints on Faulting during the MW6.4, July 23, 2020, Nima/Rongma Earthquake in Central Tibet. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022212. https://doi.org/10.1029/2021jb022212
      Li, K., Tapponnier, P., Xu, X. W., et al., 2023. The 2022, MS6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re-Activation, Slip-Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 622: 118412. https://doi.org/10.1016/j.epsl.2023.118412
      Liu, J., Xu, J., Ou, Q., et al., 2023. Discussion on the Overestimated Magnitude of the 1920 Haiyuan Earthquake. Acta Seismologica Sinica, 45(4): 579-596 (in Chinese with English abstract).
      Liu, R. F., Chen, Y. T., Ren, X., et al., 2015. Magnitude Determination. Seismological Press, Beijing (in Chinese).
      Liu-Zeng, J., Liu, Z. J., Liu, X. L., et al., 2024. Fault Orientation Trumps Fault Maturity in Controlling Coseismic Rupture Characteristics of the 2021 Maduo Earthquake. AGU Advances, 5(2): e2023AV001134. https://doi.org/10.1029/2023AV001134
      Liu-Zeng, J., Shao, Y. X., Klinger, Y., et al., 2015. Variability in Magnitude of Paleoearthquakes Revealed by Trenching and Historical Records, along the Haiyuan Fault, China. Journal of Geophysical Research (Solid Earth), 120(12): 8304-8333. https://doi.org/10.1002/2015JB012163
      Liu-Zeng, J., Sun, J., Wang, P., et al., 2012. Surface Ruptures on the Transverse Xiaoyudong Fault: A Significant Segment Boundary Breached during the 2008 Wenchuan Earthquake, China. Tectonophysics, 580: 218-241. https://doi.org/10.1016/j.tecto.2012.09.024
      Liu-Zeng, J., Wen, L., Sun, J., et al., 2010. Surficial Slip and Rupture Geometry on the Beichuan Fault near Hongkou during the Mw 7.9 Wenchuan Earthquake, China. Bulletin of the Seismological Society of America, 100(5B): 2615-2650. https://doi.org/10.1785/0120090316
      Liu-Zeng, J., Zhang, Z., Wen, L., et al., 2009. Co-Seismic Ruptures of the 12 May 2008, MS8.0 Wenchuan Earthquake, Sichuan: East-West Crustal Shortening on Oblique, Parallel Thrusts along the Eastern Edge of Tibet. Earth and Planetary Science Letters, 286(3/4): 355-370. https://doi.org/10.1016/j.epsl.2009.07.017
      Lu, L. J., Zhou, Y., Zhang, P. Z., et al., 2022. Modelling Fault Scarp Degradation to Determine Earthquake History on the Muztagh Ata and Tahman Faults in the Chinese Pamir. Frontiers in Earth Science, 10: 838866. https://doi.org/10.3389/feart.2022.838866
      Ma, J., Feng, X. J., Li, G. Y., et al., 2016. The Coseismic Vertical Displacements of Surface Rupture Zone of the 1556 Huaxian Earthquake. Seismology and Geology, 38(1): 22-30 (in Chinese with English abstract).
      McCaffrey, R., Nabelek, J., 1998. Role of Oblique Convergence in the Active Deformation of the Himalayas and Southern Tibet Plateau. Geology, 26(8): 691. https://doi.org/10.1130/0091-7613(1998)0260691:roocit>2.3.co;2 doi: 10.1130/0091-7613(1998)0260691:roocit>2.3.co;2
      Middleton, T. A., Walker, R. T., Rood, D. H., et al., 2016. The Tectonics of the Western Ordos Plateau, Ningxia, China: Slip Rates on the Luoshan and East Helanshan Faults. Tectonics, 35(11): 2754-2777. https://doi.org/10.1002/2016TC004230
      Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357-396. https://doi.org/10.1029/93rg02030
      Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365-246x.1989.tb02020.x
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
      Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/jb083ib11p05361
      Ni, J., York, J. E., 1978. Late Cenozoic Tectonics of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 83(B11): 5377-5384. https://doi.org/10.1029/jb083ib11p05377
      Nurminen, F., Baize, S., Boncio, P., et al., 2022. SURE 2.0-New Release of the Worldwide Database of Surface Ruptures for Fault Displacement Hazard Analyses. Scientific Data, 9: 729. https://doi.org/10.1038/s41597-022-01835-z
      Olen, S. M., Bookhagen, B., Hoffmann, B., et al., 2015. Understanding Erosion Rates in the Himalayan Orogen: A Case Study from the Arun Valley. Journal of Geophysical Research: Earth Surface, 120(10): 2080-2102. https://doi.org/10.1002/2014jf003410
      Oskin, M. E., Arrowsmith, J. R., Corona, A. H., et al., 2012. Near-Field Deformation from the El Mayor- Cucapah Earthquake Revealed by Differential LIDAR. Science, 335(6069): 702-705. https://www.science.org/doi/abs/10.1126/science.1213778 doi: 10.1126/science.1213778
      Ou, Q., Kulikova, G., Yu, J., et al., 2020. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. Journal of Geophysical Research: Solid Earth, 125(8): e2019JB019244. https://doi.org/10.1029/2019jb019244
      Ouchi, T., Lin, A., Chen, A., et al., 2001. The 1999 Chi-Chi (Taiwan) Earthquake: Earthquake Fault and Strong Motions. Bulletin of the Seismological Society of America, 91(5): 966-976. https://doi.org/10.1785/0120000711
      Pan, J. W., Li, H. B., Chevalier, M. L., et al., 2022. Coseismic Surface Rupture and Seismogenic Structure of the 2022 MS6.9 Menyuan Earthquake, Qinghai Province, China. Acta Geologica Sinica, 96(1): 215-231 (in Chinese with English abstract).
      Pasuto, A., Soldati, M., 2013. 7.25 Lateral Spreading. In: Shroder, J. F., ed., Treatise on Geomorphology. Academic Press, San Diego, 239-248. https://doi.org/10.1016/B978-0-12-374739-6.00173-1
      Pelletier, J. D., DeLong, S. B., Al-Suwaidi, A. H., et al., 2006. Evolution of the Bonneville Shoreline Scarp in West-Central Utah: Comparison of Scarp-Analysis Methods and Implications for the Diffusion Model of Hillslope Evolution. Geomorphology, 74(1-4): 257-270. https://doi.org/10.1016/j.geomorph.2005.08.008
      Rockwell, T. K., Klinger, Y., 2013. Surface Rupture and Slip Distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: Implications for Rupture Segmentation and Dynamics. Bulletin of the Seismological Society of America, 103(2A): 629-640. https://doi.org/10.1785/0120120192
      Rothery, D. A., Drury, S. A., 1984. The Neotectonics of the Tibetan Plateau. Tectonics, 3(1): 19-26. https://doi.org/10.1029/tc003i001p00019
      Sarmiento, A., Madugo, D., Bozorgnia, Y., et al., 2021. Fault Displacement Hazard Initiative Database. University of California, Los Angeles. https://doi.org/10.34948/N36P48
      Shao, Y. X., Liu-Zeng, J., Gao, Y. P., et al., 2022. Coseismic Displacement Measurement and Distributed Deformation Characterization: A Case of the 2021 MW7.4 Madoi Earthquake. Seismology and Geology, 44(2): 506-523 (in Chinese with English abstract).
      Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Structure and Coseismic Surface Rupture Characteristics of the M6.8 Dingri Earthquake in Tibet on January 7, 2025. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.001
      State Seismological Bureau, 1988. Active Fault System around Massif. Seismological Press, Beijing (in Chinese).
      Su, R. H., Yuan, D. Y., Xie, H., et al., 2023. Classified Surface Rupture Characteristics and Damage Analysis of the 2022 MS6.9 Menyuan Earthquake, Qinghai. Acta Seismologica Sinica, 45(5): 797-813 (in Chinese with English abstract).
      Tang, M. Y., Liu-Zeng, J., Shao, Y. X., et al., 2015. Analysis about the Minimum Magnitude Earthquake Associated with Surface Ruptures. Seismology and Geology, 37(4): 1193-1214 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2015.04.020
      Tapponnier, P., Mercier, J. L., Proust, F., et al., 1981. The Tibetan Side of the India-Eurasia Collision. Nature, 294(5840): 405-410. https://doi.org/10.1038/294405a0
      Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike-Slip Faulting along the Bangong-Nujiang Suture Zone Accommodates Coeval East-West Extension and North-South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 2002TC001361. https://doi.org/10.1029/2002tc001361
      Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Wang, H., Wright, T. J., Jing, L. Z., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019gl081916
      Wang, W. M., 2025. Preliminary Result for Rupture Process of Jan. 7, 2025, M7.1 Earthquake, Rikaze, China. National Tibetan Plateau/Third Pole Environment Data Center, Beijing.
      Wei, Z. Y., Bi, L. S., Xu, Y. R., et al., 2015. Evaluating Knickpoint Recession along an Active Fault for Paleoseismological Analysis: The Huoshan Piedmont, Eastern China. Geomorphology, 235: 63-76. https://doi.org/10.1016/j.geomorph.2015.01.013
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974
      Wen, X. Z., Yi, G. X., Xu, X. W., 2007. Background and Precursory Seismicities along and Surrounding the Kunlun Fault before the MS8.1, 2001, Kokoxili Earthquake, China. Journal of Asian Earth Sciences, 30(1): 63-72. https://doi.org/10.1016/j.jseaes.2006.07.008
      Wesnousky, S. G., 2006. Predicting the Endpoints of Earthquake Ruptures. Nature, 444(7117): 358-360. https://www.ncbi.nlm.nih.gov/pubmed/17108963 doi: 10.1038/nature05275
      Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. The Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111
      Xu, J. H., Arrowsmith, J. R., Chen, J., et al., 2021. Evaluating Young Fluvial Terrace Riser Degradation Using a Nonlinear Transport Model: Application to the Kongur Normal Fault in the Pamir, Northwest China. Earth Surface Processes and Landforms, 46(1): 280-295. https://doi.org/10.1002/esp.5022
      Xu, J. H., Chen, J., Wei, Z. Y., et al., 2023. Morphologic Dating of Scarp Morphology Based on Diffusion Equation: A Review. Seismology and Geology, 45(4): 811-832 (in Chinese with English abstract).
      Xu, X. W., Tan, X. B., Yu, G. H., et al., 2013. Normal- and Oblique-Slip of the 2008 Yutian Earthquake: Evidence for Eastward Block Motion, Northern Tibetan Plateau. Tectonophysics, 584: 152-165. https://doi.org/10.1016/j.tecto.2012.08.007
      Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 MW7.9 Wenchuan Earthquake, China. Geology, 37(6): 515-518. https://doi.org/10.1130/g25462a.1
      Xu, X. W., Yu, G. H., Klinger, Y., et al., 2006. Reevaluation of Surface Rupture Parameters and Faulting Segmentation of the 2001 Kunlunshan Earthquake (Mw7.8), Northern Tibetan Plateau, China. Journal of Geophysical Research: Solid Earth, 111(B5): 2004JB003488. https://doi.org/10.1029/2004jb003488
      Xu, X. W., Zhang, H. W., Deng, Q. D., 1988. The Paleoearthquake Traces on Huashan Front Fault Zone in Weihe Basin and Its Earthquake Intervals. Seismology and Geology, 10(4): 206 (in Chinese with English abstract).
      Xu, X. Y., 2019. Late Quaternary Activity and Environmental Effects of the Kada Zheng Fault of the Shenzha-Dingjie Fault System in Southern Tibet (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese).
      Xu, Y. R., He, H. L., Deng, Q. D., et al., 2018. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for Magnitude Limits of Normal Fault Earthquakes. Journal of Geophysical Research (Solid Earth), 123(4): 3098-3121.
      Yan, X. B., Zhou, Y. S., Li, Z. H., et al., 2018. A Study on the Seismogenic Structure of Linfen M7(3/4) Earthquake in 1695. Seismology and Geology, 40(4): 883-902 (in Chinese with English abstract).
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Aftershock Sequence Characteristics and Seismogenic Structure of the Ms6.8 Dingri Earthquake in Tibet. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract).
      Yao, G. G., Jiang, Y., Yu, X. M., 1984. Investigation on the 1303 Zhaocheng Shanxi, Earthquake (M=8) and Its Parameters Concerned. Journal of Seismological Research, 7: 313-326.
      Yao, W. Q., Wang, Z. J., Liu-Zeng, J., et al., 2022. Discussion on Coseismic Surface Rupture Length of the 2021 MW7.4 Madoi Earthquake, Qinghai, China. Seismology and Geology, 44(2): 541-559 (in Chinese with English abstract).
      Yeats, R. S., Sieh, K. E., Allen, C. R., 1997. The Geology of Earthquakes. Oxford University Press, New York.
      Yin, A., Kapp, P. A., Murphy, M. A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet. Geology, 27(9): 787-790. https://doi.org/10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2 doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
      Yue, L. F., Suppe, J., Hung, J. H., 2005. Structural Geology of a Classic Thrust Belt Earthquake: the 1999 Chi-Chi Earthquake Taiwan (MW=7.6). Journal of Structural Geology, 27(11): 2058-2083. https://doi.org/10.1016/j.jsg.2005.05.020
      Zhang, B. C, Liao, Y. H, Guo, S. M., et al., 1986. Fault Scarps Related to the 1739 Earthquake and Seismicity of the Yinchuan Graben, Ningxia Huizu Zizhiqu, China. Bulletin of the Seismological Society of America, 76(5): 1253-1287. https://doi.org/10.1785/BSSA0760051253
      Zhang, J. J., 2007. A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6): 639-649 (in Chinese with English abstract).
      Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2002. Tectonic and Chronological Evidence of the Collision of the East Himalayan Structure with India and Eurasia at the Beginning of the Paleocene in Nangabawa Region. Acta Geologica Sinica, 76(4): 445-445 (in Chinese with English abstract).
      Zhang, P. Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809-812. https://doi.org/10.1130/G20554.1
      Zheng, G., Wang, H., Wright, T. J., et al., 2017. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312. https://doi.org/10.1002/2017jb014465
      毕海芸, 郑文俊, 曾江源, 等, 2017. SfM摄影测量方法在活动构造定量研究中的应用. 地震地质, 39(4): 656-674.
      韩龙飞, 刘静, 姚文倩, 等, 2022.2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论. 地震地质, 44(2): 484-505.
      李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究. 科学通报, 43(15): 1569-1574.
      李吉均, 文世宣, 张青松, 等, 1979. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学, 9(6): 608-616.
      刘静, 徐晶, 偶奇, 等, 2023. 关于1920年海原大地震震级高估的讨论. 地震学报, 45(4): 579-596.
      刘瑞丰, 陈运泰, 任枭, 等, 2015. 震级的测定. 北京: 地震出版社.
      马冀, 冯希杰, 李高阳, 等, 2016.1556年华县地震地表破裂带同震垂直位移. 地震地质, 38(1): 22-30.
      潘家伟, 李海兵, Chevalier, M. L., 等, 2022.2022年青海门源MS6.9地震地表破裂带及发震构造研究. 地质学报, 96(1): 215-231.
      邵延秀, 刘静, 高云鹏, 等, 2022. 同震地表破裂的位移测量与弥散变形分析: 以2021年青海玛多MW7.4地震为例. 地震地质, 44(2): 506-523.
      石峰, 梁明剑, 罗全星, 等, 2025.2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15.
      国家地震局, 1988. 鄂尔多斯周缘活动断裂系. 北京: 地震出版社.
      苏瑞欢, 袁道阳, 谢虹, 等, 2023.2022年青海门源MS6.9地震地表破裂特征分类及震害分析. 地震学报, 45(5): 797-813.
      唐茂云, 刘静, 邵延秀, 等, 2015. 中小震级事件产生地表破裂的震例分析. 地震地质, 37(4): 1193-1214.
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      许建红, 陈杰, 魏占玉, 等, 2023. 基于扩散方程的陡坎形貌测年方法进展. 地震地质, 45(4): 811-832.
      徐锡伟, 张宏卫, 邓起东, 1988. 渭河盆地华山山前断裂带古地震遗迹及其重复间隔. 地震地质, 10(4): 206.
      徐心悦, 2019. 藏南申扎‒定结断裂系卡达正断裂晚第四纪活动性及其环境效应(硕士学位论文). 北京: 中国地震局地质研究所.
      闫小兵, 周永胜, 李自红, 等, 2018. 1695年临汾73/4级地震发震构造研究. 地震地质, 40(4): 883-902.
      杨婷, 王世广, 房立华等, 2025. 西藏定日Ms6.8地震余震序列特征与发震构造, 地球科学, 50(5): 1721-1732.
      姚文倩, 王子君, 刘静, 等, 2022. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论. 地震地质, 44(2): 541-559.
      张进江, 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649.
      张进江, 季建清, 钟大赉, 等, 2002. 南迦巴瓦地区东喜马拉雅构造结印度与欧亚大陆古新世初期碰撞的构造及年代学证据. 地质学报, 76(4): 445.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  1643
    • HTML全文浏览量:  27
    • PDF下载量:  199
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-02-06
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回