• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高温钡同位素地球化学研究进展及其应用

    吴非 周来童 冯亮 南晓云

    吴非, 周来童, 冯亮, 南晓云, 2025. 高温钡同位素地球化学研究进展及其应用. 地球科学, 50(7): 2461-2481. doi: 10.3799/dqkx.2025.042
    引用本文: 吴非, 周来童, 冯亮, 南晓云, 2025. 高温钡同位素地球化学研究进展及其应用. 地球科学, 50(7): 2461-2481. doi: 10.3799/dqkx.2025.042
    Wu Fei, Zhou Laitong, Feng Liang, Nan Xiaoyun, 2025. Research Progress and Applications of High⁃Temperature Barium Isotope Geochemistry. Earth Science, 50(7): 2461-2481. doi: 10.3799/dqkx.2025.042
    Citation: Wu Fei, Zhou Laitong, Feng Liang, Nan Xiaoyun, 2025. Research Progress and Applications of High⁃Temperature Barium Isotope Geochemistry. Earth Science, 50(7): 2461-2481. doi: 10.3799/dqkx.2025.042

    高温钡同位素地球化学研究进展及其应用

    doi: 10.3799/dqkx.2025.042
    基金项目: 

    国家自然科学基金委员会面上项目 42173018

    详细信息
      作者简介:

      吴非(1988-),男,教授,研究方向为同位素地球化学. ORCID:0000-0003-1617-3187. E-mail:wufei@cug.edu.cn

    • 中图分类号: P597.2

    Research Progress and Applications of High⁃Temperature Barium Isotope Geochemistry

    • 摘要:

      过去十余年,钡(Ba)同位素的地球化学研究取得了显著进展,并在示踪壳幔相互作用、俯冲带物质迁移及循环、花岗岩演化、岩浆热液流体及成矿作用、海洋生产力等方面显示出突出的应用潜力.本文系统综述了当前高温地质过程Ba同位素研究进展.已有研究初步查明不同地质储库的Ba同位素变化范围,显示不同来源的表壳物质(沉积物、蚀变洋壳等)的Ba同位素组成与亏损地幔存在差异.基于理论计算、实验研究和地质样品的观测,显示高温平衡条件下含Ba矿物之间的Ba同位素分馏有限,而含水矿物变质脱水、岩浆热液流体出溶、流体岩石反应过程会产生显著的Ba同位素分馏.最后介绍了应用Ba同位素探究表壳物质再循环和花岗岩演化及成矿的研究进展和实例,显示了Ba同位素示踪高温地质过程的应用潜力.

       

    • 图  1  全球MORB样品的δ138/134Ba与87Sr/86Sr(a)和143Nd/144Nd(b)相关图解

      DMM端元的Sr-Nd同位素参考值来自Workman and Hart(2005)

      Fig.  1.  Correlation diagrams of global MORB samples δ138/134Ba with 87Sr/86Sr (a) and 143Nd/144Nd (b)

      图  2  与俯冲带岩浆作用有关的全球不同储库的现有Ba同位素观测结果(未按比例绘制)

      修改自Le Pichon et al.2013

      Fig.  2.  The existing Ba isotope observations of global different reservoirs related to subduction zone magma processes (not to scale)

      图  3  在高温高压条件下,熔体与水相Ba2+(a)以及矿物与水相Ba2+(b)之间的Δ138/134Ba的平衡Ba同位素分馏因子(103lnβ)随温度变化的情况

      修改自Wang et al.(2023);红点数据来自Guo et al.(2020)

      Fig.  3.  The equilibrium Ba isotope fractionation factors (103lnβ) of 138Ba/134Ba between melt and aqueous Ba2+ (a) and minerals and aqueous Ba2+(b) as a function of temperature at high T-P

      图  4  Mariana岛弧岩浆岩的Sr⁃Nd同位素与Ba/Th比值(a)和δ138/134Ba(b)的相关图解

      符号颜色指示了岛弧岩浆岩的Ba/Th比值和δ138/134Ba.修改自Zhang et al.(2024),数据来自Zhang et al.(2024)

      Fig.  4.  Correlation diagrams of Sr⁃Nd isotopes, Ba/Th ratio (a), and δ138/134Ba (b) for the Mariana Island Arc magmatic rocks

      图  5  俯冲带中板片物质运输的两种不同端元模型(未按比例绘制)

      a.板片熔流体交代地幔楔;b.混杂岩底辟熔融.修改自Nielsen et al.(2020)

      Fig.  5.  Two different end⁃member models of material transport in subduction zones (not to scale)

      图  6  全球不同地区的OIB的δ138/134Ba值与(a)87Sr/86Sr,(b)206Pb/204Pb和(c)Ba/Th比值的相关图解

      数据来自Bai et al.(2022)Shu et al.(2022)Yu et al.(2022)

      Fig.  6.  The δ138/134Ba values of OIB from different global regions and their correlation with (a) 87Sr/86Sr, (b) 206Pb/204Pb, and (c) Ba/Th ratios

      图  7  不同地区酸性岩的δ138/134Ba与(a)SiO2、(b)Ba、(c)Rb/Sr及(d)Eu/Eu*的相关图解

      主微量数据来自Zhao et al.(2016)Li et al.(2017)

      Fig.  7.  Correlation diagrams of δ138/134Ba of acidic rocks from different regions with (a) SiO2, (b) Ba, (c) Rb/Sr, and (d) Eu/Eu*

      图  8  酸性岩δ138/134Ba与SiO2、Ba含量的相关图解

      数据来源:Deng et al.(2021,20222024);Huang et al.(2021)Li et al.(2024a)Nan et al.(2018)Jiang et al.(2022).颜色代表样品的Ba含量

      Fig.  8.  Correlation diagram of δ138/134Ba in acid rocks with SiO2 and Ba content

      表  1  常见含Ba矿物相之间在不同温度下的分馏系数α

      Table  1.   Fractionation coefficients α of common Ba-containing minerals at different temperatures

      温度(K) 300 500 700 1 000
      103lnα重晶石‒毒重石 ‒0.19a ‒0.19b ‒0.07a ‒0.07b ‒0.04a ‒0.04b ‒0.02a ‒0.02b
      103lnα白云母‒毒重石 ‒0.09a ‒0.19b ‒0.03a ‒0.07b ‒0.02a ‒0.03b ‒0.01a ‒0.02b
      103lnα微斜长石‒毒重石 ‒0.13a ‒0.16b ‒0.05a ‒0.06b ‒0.02a ‒0.03b ‒0.01a ‒0.01b
      注:a代表数据来自Wang et al. (2023)b代表数据来自Xiao et al. (2023).
      下载: 导出CSV
    • Albarède, F., Beard, B., 2004. Analytical Methods for Non-Traditional Isotopes. Reviews in Mineralogy and Geochemistry, 55(1): 113-152. https://doi.org/10.2138/gsrmg.55.1.113
      An, Y. J., Li, X., Zhang, Z. F., 2020. Barium Isotopic Compositions in Thirty-Four Geological Reference Materials Analysed by MC-ICP-MS. Geostandards and Geoanalytical Research, 44(1): 183-199. https://doi.org/10.1111/ggr.12299
      Bachmann, O., Bergantz, G. W., 2004. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 45(8): 1565-1582. https://doi.org/10.1093/petrology/egh019
      Bai, R. X., Jackson, M. G., Huang, F., et al., 2022. Barium Isotopes in Ocean Island Basalts as Tracers of Mantle Processes. Geochimica et Cosmochimica Acta, 336: 436-447. https://doi.org/10.1016/j.gca.2022.08.023
      Bédard, J. H., 2005. Partitioning Coefficients between Olivine and Silicate Melts. Lithos, 83(3-4): 394-419. https://doi.org/10.1016/j.lithos.2005.03.011
      Bigeleisen, J., Mayer, M. G., 1947. Calculation of Equilibrium Constants for Isotopic Exchange Reactions. The Journal of Chemical Physics, 15(5): 261-267. https://doi.org/10.1063/1.1746492
      Bonechi, B., Perinelli, C., Gaeta, M., et al., 2021. High Pressure Trace Element Partitioning between Clinopyroxene and Alkali Basaltic Melts. Geochimica et Cosmochimica Acta, 305: 282-305. https://doi.org/10.1016/j.gca.2021.04.023
      Brenan, J. M., Shaw, H. F., Ryerson, F. J., 1995a. Experimental Evidence for the Origin of Lead Enrichment in Convergent-Margin Magmas. Nature, 378(6552): 54-56. https://doi.org/10.1038/378054a0
      Brenan, J. M., Shaw, H. F., Ryerson, F. J., et al., 1995b. Experimental Determination of Trace-Element Partitioning between Pargasite and a Synthetic Hydrous Andesitic Melt. Earth and Planetary Science Letters, 135(1-4): 1-11. https://doi.org/10.1016/0012-821X(95)00139-4
      Brenan, J. M., Shaw, H. F., Ryerson, F. J., et al., 1995c. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900 ℃ and 2.0 GPa: Constraints on the Trace Element Chemistry of Mantle and Deep Crustal Fluids. Geochimica et Cosmochimica Acta, 59(16): 3331-3350. https://doi.org/10.1016/0016-7037(95)00215-L
      Bridgestock, L., Hsieh, Y. T., Porcelli, D., et al., 2018. Controls on the Barium Isotope Compositions of Marine Sediments. Earth and Planetary Science Letters, 481: 101-110. https://doi.org/10.1016/j.epsl.2017.10.019
      Chen, A. X., Chen, Y. X., Gu, X. F., et al., 2023. Barium Isotope Behavior during Interaction between Serpentinite-Derived Fluids and Metamorphic Rocks in the Continental Subduction Zone. Geochimica et Cosmochimica Acta, 353: 61-75. https://doi.org/10.1016/j.gca.2023.05.016
      Cheng, Y. S., Du, Y. F., Chen, K. Y., et al., 2022. Rapid Two-Column Separation Method for Determining Barium Isotopic Compositions Using MC-ICP-MS. Atomic Spectroscopy, 43(3): 236-245. https://doi.org/10.46770/as.2022.105
      Davies, J. H., Stevenson, D. J., 1992. Physical Model of Source Region of Subduction Zone Volcanics. Journal of Geophysical Research: Solid Earth, 97(B2): 2037-2070. https://doi.org/10.1029/91JB02571
      Deng, G. X., Jiang, D. S., Li, G., et al., 2024. Barium Isotope Evidence for a Magmatic Fluid-Dominated Petrogenesis of LCT-Type Pegmatites. Geochemical Perspectives Letters, 31: 14-20. https://doi.org/10.7185/geochemlet.2426
      Deng, G. X., Jiang, D. S., Zhang, R. Q., et al., 2022. Barium Isotopes Reveal the Role of Deep Magmatic Fluids in Magmatic-Hydrothermal Evolution and Tin Enrichment in Granites. Earth and Planetary Science Letters, 594: 117724. https://doi.org/10.1016/j.epsl.2022.117724
      Deng, G. X., Kang, J. T., Nan, X. Y., et al., 2021. Barium Isotope Evidence for Crystal-Melt Separation in Granitic Magma Reservoirs. Geochimica et Cosmochimica Acta, 292: 115-129. https://doi.org/10.1016/j.gca.2020.09.027
      Dunn, T., Sen, C., 1994. Mineral/Matrix Partition Coefficients for Orthopyroxene, Plagioclase, and Olivine in Basaltic to Andesitic Systems: A Combined Analytical and Experimental Study. Geochimica et Cosmochimica Acta, 58(2): 717-733. https://doi.org/10.1016/0016-7037(94)90501-0
      Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163-181. https://doi.org/10.1029/92PA00181
      Eagle, M., Paytan, A., Arrigo, K. R., et al., 2003. A Comparison between Excess Barium and Barite as Indicators of Carbon Export. Paleoceanography, 18(1): 1-13. https://doi.org/10.1029/2002PA000793
      Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991-15019. https://doi.org/10.1029/97JB00788
      Eugster, O., Tera, F., Wasserburg, G. J., 1969. Isotopic Analyses of Barium in Meteorites and in Terrestrial Samples. Journal of Geophysical Research, 74(15): 3897-3908. https://doi.org/10.1029/jb074i015p03897
      Ewart, A., Griffin, W. L., 1994. Application of Proton- Microprobe Data to Trace-Element Partitioning in Volcanic Rocks. Chemical Geology, 117(1-4): 251-284. https://doi.org/10.1016/0009-2541(94)90131-7
      Fang, L. R., Moynier, F., Huang, F., et al., 2022. Barium Stable Isotopic Composition of Chondrites and Its Implication for the Earth. Chemical Geology, 604: 120923. https://doi.org/10.1016/j.chemgeo.2022.120923
      Giletti, B. J., Shanahan, T. M., 1997. Alkali Diffusion in Plagioclase Feldspar. Chemical Geology, 139(1-4): 3-20. https://doi.org/10.1016/S0009-2541(97)00026-0
      Gou, L. F., Deng, L., 2019. Determination of Barium Isotopic Ratios in River Water on the Multiple Collector Inductively Coupled Plasma Mass Spectrometer. Analytical Sciences, 35(5): 521-527. https://doi.org/10.2116/analsci.18P329
      Gu, X. F., Guo, S., Yu, H. M., et al., 2021. Behavior of Barium Isotopes during High-Pressure Metamorphism and Fluid Evolution. Earth and Planetary Science Letters, 575: 117176. https://doi.org/10.1016/j.epsl.2021.117176
      Guo, H. H., Li, W. Y., Nan, X. Y., et al., 2020. Experimental Evidence for Light Ba Isotopes Favouring Aqueous Fluids over Silicate Melts. Geochemical Perspectives Letters, 16: 6-11. https://doi.org/10.7185/geochemlet.2036
      Hao, L. L., Nan, X. Y., Kerr, A. C., et al., 2022. Mg-Ba-Sr-Nd Isotopic Evidence for a Mélange Origin of Early Paleozoic Arc Magmatism. Earth and Planetary Science Letters, 577: 117263. https://doi.org/10.1016/j.epsl.2021.117263
      Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46-56. https://doi.org/10.1007/BF00310881
      Hoefs, J., 2021. Stable Isotope Geochemistry. Springer, Berlin. https://doi.org/10.1007/978-3-030-77692-3
      Hoernle, K., Hauff, F., Kokfelt, T. F., et al., 2011. On- and Off-Axis Chemical Heterogeneities along the South Atlantic Mid-Ocean-Ridge (5-11°S): Shallow or Deep Recycling of Ocean Crust and/or Intraplate Volcanism? Earth and Planetary Science Letters, 306(1-2): 86-97. https://doi.org/10.1016/j.epsl.2011.03.032
      Horner, T. J., Kinsley, C. W., Nielsen, S. G., 2015. Barium-Isotopic Fractionation in Seawater Mediated by Barite Cycling and Oceanic Circulation. Earth and Planetary Science Letters, 430: 511-522. https://doi.org/10.1016/j.epsl.2015.07.027
      Huang, F., Bai, R. X., Deng, G. X., et al., 2021. Barium Isotope Evidence for the Role of Magmatic Fluids in the Origin of Himalayan Leucogranites. Science Bulletin, 66(22): 2329-2336. https://doi.org/10.1016/j.scib.2021.07.020
      Huang, F., Tian, S. Y., 2018. Recent Advances of Metal Stable Isotope Geochernistry Studies. Bulletin of Mineralogy, Petrology and Geochemistry, 37(5): 793-811 (in Chinese with English abstract).
      Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. https://doi.org/10.1029/2005JB004066
      Imeokparia, E. G., 1981. Ba/Rb and Rb/Sr Ratios as Indicators of Magmatic Fractionation, Postmagmatic Alteration and Mineralization-Afu Younger Granite Complex, Northern Nigeria. Geochemical Journal, 15(4): 209-219. https://doi.org/10.2343/geochemj.15.209
      Jiang, D. S., Erdmann, S., Deng, G. X., et al., 2022. Barium Isotope Evidence for the Generation of Peralkaline Granites from a Fluid-Metasomatized Crustal Source. Chemical Geology, 614: 121197. https://doi.org/10.1016/j.chemgeo.2022.121197
      Jiang, D. S., Xu, X. S., Erdmann, S., et al., 2024. Ba-Mg Isotopic Evidence from an OIB-Type Diabase for a Big Mantle Wedge beneath East Asia in the Early Cretaceous. Chemical Geology, 646: 121917. https://doi.org/10.1016/j.chemgeo.2023.121917
      Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids. Nature, 380(6571): 237-240. https://doi.org/10.1038/380237a0
      Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
      Koornneef, J. M., Bouman, C., Schwieters, J. B., et al., 2014. Measurement of Small Ion Beams by Thermal Ionisation Mass Spectrometry Using New 1013 Ohm Resistors. Analytica Chimica Acta, 819: 49-55. https://doi.org/10.1016/j.aca.2014.02.007
      Laubier, M., Grove, T. L., Langmuir, C. H., 2014. Trace Element Mineral/Melt Partitioning for Basaltic and Basaltic Andesitic Melts: An Experimental and Laser ICP-MS Study with Application to the Oxidation State of Mantle Source Regions. Earth and Planetary Science Letters, 392: 265-278. https://doi.org/10.1016/j.epsl.2014.01.053
      Le Pichon, X., Francheteau, J., Bonnin, J., 2013 Plate Tectonics. Elsevier Scientific Publishing Company, Amsterdam.
      Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).
      Li, Q., Zhao, K. D., Zhu, Z. Y., et al., 2024a. Barium Isotope Variations in Highly-Fractionated Granites Linked to Tin Mineralization: New Insights into Tin Recycling and Enrichment in the Continental Crust. Chemical Geology, 646: 121914. https://doi.org/10.1016/j.chemgeo.2023.121914
      Li, X. L., Chen, Y. X., Demény, A., et al., 2024b. Barium Isotope Variation during Fluid-Rock Interaction at Forearc Depths: Evidence from High-Pressure Fluid-Metasomatized Rocks in the Eastern Alps. Lithos, 480-481: 107665. https://doi.org/10.1016/j.lithos.2024.107665
      Li, W. Y., Yu, H. M., Xu, J., et al., 2020. Barium Isotopic Composition of the Mantle: Constraints from Carbonatites. Geochimica et Cosmochimica Acta, 278: 235-243. https://doi.org/10.1016/j.gca.2019.06.041
      Li, Y. L., Zhang, H. F., Guo, J. H., et al., 2017. Petrogenesis of the Huili Paleoproterozoic Leucogranite in the Jiaobei Terrane of the North China Craton: A Highly Fractionated Albite Granite Forced by K-Feldspar Fractionation. Chemical Geology, 450: 165-182. https://doi.org/10.1016/j.chemgeo.2016.12.029
      Lin, Y. B., Wei, H. Z., Jiang, S. Y., et al., 2020. Accurate Determination of Barium Isotopic Compositions in Sequentially Leached Phases from Carbonates by Double Spike-Thermal Ionization Mass Spectrometry (DS-TIMS). Analytical Chemistry, 92(3): 2417-2424. https://doi.org/10.1021/acs.analchem.9b03137
      Liu, J. W., Tian, S. H., Geng, X. L., et al., 2024. Subduction-Induced Sedimentary Metasomatism of Orogenic Lithospheric Mantle: Insights from Potassium Isotope in Lamprophyres of Sanjiang Region. Earth Science, 49(11): 3930-3945 (in Chinese with English abstract).
      Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Liu, Z. C., Wu, F. Y., Liu, X. C., et al., 2019. Mineralogical Evidence for Fractionation Processes in the Himalayan Leucogranites of the Ramba Dome, Southern Tibet. Lithos, 340-341: 71-86. https://doi.org/10.1016/j.lithos.2019.05.004
      Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal, 591(2): 1220-1247. https://doi.org/10.1086/375492
      Long, P. E., Luth, W. C., 1986. Origin of K-Feldspar Megacrysts in Granitic Rocks; Implications of a Partitioning Model for Barium. American Mineralogist, 71(3-4): 367-375.
      Lu, X. B., Bai, J. H., Ye, F., et al., 2024. Progress and Prospect of Rare Earth Elements Stable Isotope Analysis Techniques. Journal of Earth Science, 35(6): 2129-2132. https://doi.org/10.1007/s12583-024-2022-8
      Mallmann, G., O'Neill, H. S. C., 2009. The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with Some Other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9): 1765-1794. https://doi.org/10.1093/petrology/egp053
      Marschall, H. R., Schumacher, J. C., 2012. Arc Magmas Sourced from Mélange Diapirs in Subduction Zones. Nature Geoscience, 5(12): 862-867. https://doi.org/10.1038/ngeo1634
      McBirney, A. R., Nicolas, A., 1997. The Skaergaard Layered Series. Part Ⅱ. Magmatic Flow and Dynamic Layering. Journal of Petrology, 38(5): 569-580. https://doi.org/10.1093/petroj/38.5.569
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Miyazaki, T., Kimura, J. I., Chang, Q., 2014. Analysis of Stable Isotope Ratios of Ba by Double-Spike Standard-Sample Bracketing Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 29(3): 483-490. https://doi.org/10.1039/C3JA50311A
      Morgan, W. J., 1971. Convection Plumes in the Lower Mantle. Nature, 230(5288): 42-43. https://doi.org/10.1038/230042a0
      Morris, J. D., Ryan, J. G., 2003. Subduction Zone Processes and Implications for Changing Composition of the Upper and Lower Mantle. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 451-470. https://doi.org/10.1016/b0-08-043751-6/02011-9
      Moynier, F., Pringle, E. A., Bouvier, A., et al., 2015. Barium Stable Isotope Composition of the Earth, Meteorites, and Calcium-Aluminum-Rich Inclusions. Chemical Geology, 413: 1-6. https://doi.org/10.1016/j.chemgeo.2015.08.002
      Nan, X. Y., Wu, F., Yu, H. M., et al., 2023. Barium Isotope Compositions of Altered Oceanic Crust from the IODP Site 1256 at the East Pacific Rise. Chemical Geology, 641: 121778. https://doi.org/10.1016/j.chemgeo.2023.121778
      Nan, X. Y., Wu, F., Zhang, Z. F., et al., 2015. High- Precision Barium Isotope Measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(11): 2307-2315. https://doi.org/10.1039/C5JA00166H
      Nan, X. Y., Yu, H. M., Kang, J. T., et al., 2022. Re- Visiting Barium Isotope Compositions of Mid-Ocean Ridge Basalts and the Implications. JUSTC, 52(3): 1-8. https://doi.org/10.52396/justc-2021-0276
      Nan, X. Y., Yu, H. M., Rudnick, R. L., et al., 2018. Barium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 233: 33-49. https://doi.org/10.1016/j.gca.2018.05.004
      Nash, W. P., Crecraft, H. R., 1985. Partition Coefficients for Trace Elements in Silicic Magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5
      Nie, C., Kang, J. T., Jiang, Y., et al., 2024. Effect of Terrestrial Weathering on Stable Sr and Ba Isotope Compositions of Eucrites. Geochimica et Cosmochimica Acta, 372: 28-41. https://doi.org/10.1016/j.gca.2024.03.009
      Nielsen, S. G., Horner, T. J., Pryer, H. V., et al., 2018. Barium Isotope Evidence for Pervasive Sediment Recycling in the Upper Mantle. Science Advances, 4(7): eaas8675. https://doi.org/10.1126/sciadv.aas8675
      Nielsen, S. G., Shu, Y. C., Auro, M., et al., 2020. Barium Isotope Systematics of Subduction Zones. Geochimica et Cosmochimica Acta, 275: 1-18. https://doi.org/10.1016/j.gca.2020.02.006
      Nier, A. O., 1938. The Isotopic Constitution of Strontium, Barium, Bismuth, Thallium and Mercury. Physical Review, 54(4): 275-278. https://doi.org/10.1103/PhysRev.54.275
      Patino Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689
      Ranen, M. C., Jacobsen, S. B., 2006. Barium Isotopes in Chondritic Meteorites: Implications for Planetary Reservoir Models. Science, 314(5800): 809-812. https://doi.org/10.1126/science.1132595
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Salters, V. J. M., Longhi, J. E., Bizimis, M., 2002. Near Mantle Solidus Trace Element Partitioning at Pressures up to 3.4 GPa. Geochemistry, Geophysics, Geosystems, 3(7): 1-23. https://doi.org/10.1029/2001GC000148
      Scaillet, B., France-Lanord, C., Le Fort, P., 1990. Badrinath-Gangotri Plutons (Garhwal, India): Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite. Journal of Volcanology and Geothermal Research, 44(1-2): 163-188. https://doi.org/10.1016/0377-0273(90)90017-A
      Schauble, E. A., 2011. First-Principles Estimates of Equilibrium Magnesium Isotope Fractionation in Silicate, Oxide, Carbonate and Hexaaquamagnesium (2+) Crystals. Geochimica et Cosmochimica Acta, 75(3): 844-869. https://doi.org/10.1016/j.gca.2010.09.044
      Schönbächler, M., Fehr, M. A., 2014. Basics of Ion Exchange Chromatography for Selected Geological Applications. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 123-146. https://doi.org/10.1016/b978-0-08-095975-7.01408-x
      Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/S0567739476001551
      Shu, Y. C., Zhang, G. L., Tian, L. L., et al., 2022. Constraints of Barium Isotopes on Recycling of Ancient Oceanic Crust in the Mantle of the South China Sea. Journal of Volcanology and Geothermal Research, 429: 107608. https://doi.org/10.1016/j.jvolgeores.2022.107608
      Słaby, E., Galbarczyk-Gąsiorowska, L., Seltmann, R., et al., 2007. Alkali Feldspar Megacryst Growth: Geochemical Modelling. Mineralogy and Petrology, 89(1): 1-29. https://doi.org/10.1007/s00710-006-0135-7
      Strelow, F. W. E., 1960. An Ion Exchange Selectivity Scale of Cations Based on Equilibrium Distribution Coefficients. Analytical Chemistry, 32(9): 1185-1188. https://doi.org/10.1021/ac60165a042
      Strelow, F. W. E., Rethemeyer, R., Bothma, C. J. C., 1965. Ion Exchange Selectivity Scales for Cations in Nitric Acid and Sulfuric Acid Media with a Sulfonated Polystyrene Resin. Analytical Chemistry, 37(1): 106-111.
      Takahashi, T., Hirahara, Y., Miyazaki, T., et al., 2009. Precise Determination of Sr Isotope Ratios in Igneous Rock Samples and Application to Micro-Analysis of Plagioclase Phenocrysts. JAMSTEC Report of Research and Development, 2009: 59-64. https://doi.org/10.5918/jamstecr.2009.59
      Tatsumi, Y., Hamilton, D. L., Nesbitt, R. W., 1986. Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas: Evidence from High-Pressure Experiments and Natural Rocks. Journal of Volcanology and Geothermal Research, 29(1-4): 293-309. https://doi.org/10.1016/0377-0273(86)90049-1
      Tian, L. L., Gong, Y. Z., Wei, W., et al., 2020. Rapid Determination of Ba Isotope Compositions for Barites Using a H2O-Extraction Method and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(8): 1566-1573. https://doi.org/10.1039/D0JA00078G
      Turner, S. J., Langmuir, C. H., 2024. An Alternative to the Igneous Crust Fluid + Sediment Melt Paradigm for Arc Lava Geochemistry. Science Advances, 10(24): eadg6482. https://doi.org/10.1126/sciadv.adg6482
      Turner, S., Hawkesworth, C., Rogers, N., et al., 1997. 238U-230Th Disequilibria, Magma Petrogenesis, and Flux Rates beneath the Depleted Tonga-Kermadec Island Arc. Geochimica et Cosmochimica Acta, 61(22): 4855-4884. https://doi.org/10.1016/S0016-7037(97)00281-0
      Urey, H. C., 1947. The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society (Resumed), 562-581. https://doi.org/10.1039/JR9470000562
      van Zuilen, K., Nägler, T. F., Bullen, T. D., 2016. Barium Isotopic Compositions of Geological Reference Materials. Geostandards and Geoanalytical Research, 40(4): 543-558. https://doi.org/10.1111/ggr.12122
      von Allmen, K., Böttcher, M. E., Samankassou, E., et al., 2010. Barium Isotope Fractionation in the Global Barium Cycle: First Evidence from Barium Minerals and Precipitation Experiments. Chemical Geology, 277(1-2): 70-77. https://doi.org/10.1016/j.chemgeo.2010.07.011
      Wang, J. L., Wei, H. Z., Palmer, M. R., et al., 2023. Barium Isotope Fractionation during Granitic Magmatism and Potential of δ138/134Ba for Distinguishing Magmatic-Hydrothermal Transition in Granitic Magma Systems. Geochimica et Cosmochimica Acta, 360: 138-150. https://doi.org/10.1016/j.gca.2023.09.013
      Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China Earth Sciences, 60(9): 1655-1663. https://doi.org/10.1007/s11430-017-9075-8
      Wang, W. Z., Wu, Z. Q., Huang, F., 2021. Equilibrium Barium Isotope Fractionation between Minerals and Aqueous Solution from First-Principles Calculations. Geochimica et Cosmochimica Acta, 292: 64-77. https://doi.org/10.1016/j.gca.2020.09.021
      Wei, G. J., Huang, F., Ma, J. L., et al., 2022. Progress of Non-Traditional Stable Isotope Geochemistry of the Past Decade in China. Bulletin of Mineralogy, Petrology and Geochemistry, 41(1): 1-44 (in Chinese with English abstract).
      Wei, G. Y., Ling, H. F., Shields, G. A., et al., 2021. Revisiting Stepwise Ocean Oxygenation with Authigenic Barium Enrichments in Marine Mudrocks. Geology, 49(9): 1059-1063. https://doi.org/10.1130/G48825.1
      White, W. M., 2015. Probing the Earth's Deep Interior through Geochemistry. Geochemical Perspectives, 95-251. https://doi.org/10.7185/geochempersp.4.2
      Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
      Wu, F., Turner, S., Schaefer, B. F., 2021. Ba Isotope Analysis Using 1013 Ω Amplifiers. Thermo Fisher Scientific Inc., Waltham.
      Wu, F., Turner, S., Hoernle, K., et al., 2023. Barium Isotope Composition of Depleted MORB Mantle Constrained by Basalts from the South Mid-Atlantic Ridge (5-11°S) with Implication for Recycled Components in the Convecting Upper Mantle. Geochimica et Cosmochimica Acta, 340: 85-98. https://doi.org/10.1016/j.gca.2022.11.013
      Wu, F., Turner, S., Schaefer, B. F., 2020. Mélange versus Fluid and Melt Enrichment of Subarc Mantle: A Novel Test Using Barium Isotopes in the Tonga-Kermadec Arc. Geology, 48(11): 1053-1057. https://doi.org/10.1130/G47549.1
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese).
      Xiao, Z. C., Wang, W. Z., Gu, X. F., et al., 2023. First-Principles Calculations of Equilibrium Barium Isotope Fractionation among Silicate Minerals. Geochimica et Cosmochimica Acta, 360: 163-174. https://doi.org/10.1016/j.gca.2023.09.017
      Xu, J., Li, W. Y., Gu, X. F., et al., 2023. Barium Isotope Fractionation during Slab Dehydration: Records from an Eclogite-Quartz Vein System in Dabie Orogen. Geochimica et Cosmochimica Acta, 343: 272-285. https://doi.org/10.1016/j.gca.2022.11.030
      Xu, Z., Zheng, Y. F., Zhao, Z. F., 2022. Barium Isotope Fractionation during Dehydration Melting of the Subducting Oceanic Crust: Geochemical Evidence from OIB-like Continental Basalts. Chemical Geology, 594: 120751. https://doi.org/10.1016/j.chemgeo.2022.120751
      Ye, X. Y., Li, B., Tan, D. B., et al., 2024. Lithium Isotope Analytical Methods and Implications for Rare- Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 35(6): 1878-1894. https://doi.org/10.1007/s12583-023-1972-1
      Yi, D., Zhao, J., Li, C. H., et al., 2022. Crustal Contaminations Responsible for the Petrogenesis of Basalts from the Emeishan Large Igneous Province, NW China: New Evidence from Ba Isotopes. Journal of Earth Science, 33(1): 109-120. https://doi.org/10.1007/s12583-021-1513-0
      Young, E. D., Manning, C. E., Schauble, E. A., et al., 2015. High-Temperature Equilibrium Isotope Fractionation of Non-Traditional Stable Isotopes: Experiments, Theory, and Applications. Chemical Geology, 395: 176-195. https://doi.org/10.1016/j.chemgeo.2014.12.013
      Yu, H. M., Nan, X. Y., Wu, F., et al., 2022. Barium Isotope Evidence of a Fluid-Metasomatized Mantle Component in the Source of Azores OIB. Chemical Geology, 610: 121097. https://doi.org/10.1016/j.chemgeo.2022.121097
      Yu, Y., Siebert, C., Fietzke, J., et al., 2020. The Impact of MC-ICP-MS Plasma Conditions on the Accuracy and Precision of Stable Isotope Measurements Evaluated for Barium Isotopes. Chemical Geology, 549: 119697. https://doi.org/10.1016/j.chemgeo.2020.119697
      Zeng, G., Chen, L. H., Hofmann, A. W., et al., 2021. Nephelinites in Eastern China Originating from the Mantle Transition Zone. Chemical Geology, 576: 120276. https://doi.org/10.1016/j.chemgeo.2021.120276
      Zeng, Z., Li, X. H., Liu, Y., et al., 2019. High-Precision Barium Isotope Measurements of Carbonates by MC-ICP-MS. Geostandards and Geoanalytical Research, 43(2): 291-300. https://doi.org/10.1111/ggr.12256
      Zhang, Y. X., Shu, Y. C., Turner, S., et al., 2024. Deciphering Contribution of Recycled Altered Oceanic Crust to Arc Magmas Using Ba-Sr-Nd Isotopes. Journal of Geophysical Research: Solid Earth, 129(3): e2023JB028407. https://doi.org/10.1029/2023JB028407
      Zhao, J. L., Qiu, J. S., Liu, L., et al., 2016. The Late Cretaceous I- and A-Type Granite Association of Southeast China: Implications for the Origin and Evolution of Post-Collisional Extensional Magmatism. Lithos, 240-243: 16-33. https://doi.org/10.1016/j.lithos.2015.10.018
      Zhao, Y. P., Tang, Y. J., Xu, J., et al., 2021. Barium Isotope Evidence for Recycled Crustal Materials in the Mantle Source of Continental Basalts. Lithos, 390-391: 106111. https://doi.org/10.1016/j.lithos.2021.106111
      Zheng, Y. F., Chen, R. X., Gao, P., 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28 (in Chinese with English abstract).
      Zhu, R. Z., Fowler, M., Huang, F., et al., 2024. Barium-Mg Isotopes in High Ba-Sr Granites Record a Melt-Metasomatized Mantle Source and Crustal Growth. Geochimica et Cosmochimica Acta, 379: 124-133. https://doi.org/10.1016/j.gca.2024.07.004
      Zhu, X. K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688 (in Chinese with English abstract).
      黄方, 田笙谕, 2018. 若干金属稳定同位素体系的研究进展: 以中国科大实验室为例. 矿物岩石地球化学通报, 37(5): 793-811.
      李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
      刘嘉文, 田世洪, 耿显雷, 等, 2024. 俯冲沉积物交代造山带岩石圈地幔: 来自三江地区煌斑岩钾同位素的约束. 地球科学, 49(11): 3930-3945. doi: 10.3799/dqkx.2024.100
      韦刚健, 黄方, 马金龙, 等, 2022. 近十年我国非传统稳定同位素地球化学研究进展. 矿物岩石地球化学通报, 41(1): 1-44
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
      朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688.
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  275
    • HTML全文浏览量:  18
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-06
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回