• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    风暴潮下海堤破坏模式及钢板桩加固机制

    彭铭 张敬良 朱艳 李爽 陈昉健

    彭铭, 张敬良, 朱艳, 李爽, 陈昉健, 2025. 风暴潮下海堤破坏模式及钢板桩加固机制. 地球科学, 50(10): 3809-3822. doi: 10.3799/dqkx.2025.137
    引用本文: 彭铭, 张敬良, 朱艳, 李爽, 陈昉健, 2025. 风暴潮下海堤破坏模式及钢板桩加固机制. 地球科学, 50(10): 3809-3822. doi: 10.3799/dqkx.2025.137
    Peng Ming, Zhang Jingliang, Zhu Yan, Li Shuang, Chen Fangjian, 2025. Failure Mode of Dike and Reinforcement Mechanism of Steel Sheet Pile during Storm Surge. Earth Science, 50(10): 3809-3822. doi: 10.3799/dqkx.2025.137
    Citation: Peng Ming, Zhang Jingliang, Zhu Yan, Li Shuang, Chen Fangjian, 2025. Failure Mode of Dike and Reinforcement Mechanism of Steel Sheet Pile during Storm Surge. Earth Science, 50(10): 3809-3822. doi: 10.3799/dqkx.2025.137

    风暴潮下海堤破坏模式及钢板桩加固机制

    doi: 10.3799/dqkx.2025.137
    基金项目: 

    国家自然科学基金重点项目 U23A2044

    国家自然科学基金青年项目 42207238

    广西重点研发计划 桂科AB25069121

    福建省自然科学基金面上项目 2022J011253

    详细信息
      作者简介:

      彭铭(1981-),教授,从事地质灾害链研究. ORCID:0000-0001-9134-4391. E⁃mail:pengming@tongji.edu.cn

      通讯作者:

      朱艳(1986-),研究员,从事海岸水工岩土灾害防治研究.ORCID:0009-0007-0974-9447. E-mail: zhuyan@ndri.sh.cn

    • 中图分类号: P642

    Failure Mode of Dike and Reinforcement Mechanism of Steel Sheet Pile during Storm Surge

    • 摘要:

      为研究风暴潮期间的海堤稳定性,基于水槽试验对不同水位、波高下的海堤破坏模式及钢板桩对海堤的加固机制进行了分析.试验结果表明:未加固海堤在低水位大波高下发生破坏,破坏模式为渗流越浪-陆侧坡滑移-挡浪墙倾斜-堤顶冲刷.单排钢板桩在低水位大波高下通过降低海堤内部渗流强度使海堤保持基本稳定;高水位中等波高下海堤发生破坏,破坏模式与未加固海堤相似,但钢板桩有效阻隔了越浪水体的溯源冲刷,降低了堤顶冲刷程度,在此期间钢板桩发生明显变形其最大弯矩迅速增大.双排钢板桩在高水位中等波高下进一步降低渗流和溯源冲刷强度,海堤基本保持稳定,仅部分栅栏板发生滑移;高水位大波高下,其陆侧桩和海侧桩有效阻隔了堤前波浪及堤后越浪水体对堤顶的冲刷,堤顶及挡浪墙保持完好,由于拉杆对钢板桩变形限制,钢板桩最大弯矩要更小且位置更深.研究表明单排钢板桩通过降低渗流强度和阻隔越浪水体的溯源冲刷增强了海堤稳定性.双排钢板桩降低渗流及堤后溯源冲刷的效果更好,且阻隔了堤前波浪冲刷,堤顶在最极端工况下仍保持完整.

       

    • 图  1  海堤及基础物理模型

      Fig.  1.  Physical model of the dike and foundation

      图  2  海堤护面结构及孔压传感器布置

      Fig.  2.  Revetment structures and pore pressure sensors in the dike

      图  3  单双排钢板桩及应变片布置

      a.单双排钢板桩加固形式; b.钢板桩应变片

      Fig.  3.  The structures of single-row and double-row steel sheet piles and corresponding strain gauges

      图  4  试验过程

      Fig.  4.  Test process

      图  5  海堤破坏过程

      Fig.  5.  The failure process of the unreinforced dike

      图  6  未加固海堤孔隙水压力

      Fig.  6.  Pore pressure in the unreinforced dike

      图  7  未加固海堤孔隙水压力

      Fig.  7.  Pore pressure in the unreinforced dike

      图  8  单排钢板桩加固海堤破坏过程

      Fig.  8.  The failure process of the dike reinforced by single-row steel sheet pile

      图  9  单排钢板桩海堤孔隙水压力

      Fig.  9.  Pore pressure in dike reinforced by single-row steel sheet pile

      图  10  单排钢板桩最大弯矩

      Fig.  10.  The maximum bending moment of single-row steel sheet pile

      图  11  双排钢板桩加固海堤破坏过程

      Fig.  11.  The failure process of the dike reinforced by double-row steel sheet pile

      图  12  双排钢板桩海堤孔隙水压力

      Fig.  12.  Pore pressure in dike reinforced by double-row steel sheet pile

      图  13  阶段8单双排钢板桩最大弯矩

      Fig.  13.  The maximum bending moments of single-row and double-row steel sheet piles in stage Ⅷ

      图  14  双排钢板桩最大弯矩

      Fig.  14.  The maximum bending moments of double-row steel sheet piles

      图  15  单、双排钢板桩对海堤加固机理

      a.未加固海堤; b.单排钢板桩海堤; c.双排钢板桩海堤

      Fig.  15.  The reinforcement mechanisms of single-row and double-row steel sheet piles on dike

      图  16  波高对钢板桩最大弯矩的影响

      Fig.  16.  The influence of the wave height on the maximum bending moment of steel sheet pile

      图  17  水位对钢板桩最大弯矩的影响

      Fig.  17.  The influence of the water level on the maximum bending moment of steel sheet pile

      图  18  海侧桩与陆侧桩最大弯矩比

      Fig.  18.  The maximum bending moment ratio of the seaward pile and landward pile

    • Aerts, J. C. J. H., 2018. A Review of Cost Estimates for Flood Adaptation. Water, 10(11): 1646. https://doi.org/10.3390/w10111646
      Perks, A. R., 2007. The New Orleans Hurricane Protection System: What Went Wrong and Why. Canadian Consulting Engineer, 48(6): 10-12.
      Brandon, T. L., Wright, S. G., Duncan, J. M., 2008. Analysis of the Stability of I-Walls with Gaps between the I-Wall and the Levee Fill. Journal of Geotechnical and Geoenvironmental Engineering, 134(5): 692-700. https://doi.org/10.1061/(asce)1090-0241(2008)134:5(692)
      Chen, L. Y., Zhai, H. L., Wang, P. D., et al., 2020. Physical Modeling of Combined Waves and Current Propagating around a Partially Embedded Monopile in a Porous Seabed. Ocean Engineering, 205: 107307. https://doi.org/10.1016/j.oceaneng.2020.107307
      Chen, P. B., 2015. Experiment Study of Wave Action on Gabion Blocks (Dissertation). Dalian University of Technology, Dalian (in Chinese with English abstract).
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent and Warn the Catastrophe Risk? Earth Science, 47(10): 3897-3899(in Chinese with English abstract).
      Danka, J., Zhang, L. M., 2015. Dike Failure Mechanisms and Breaching Parameters. Journal of Geotechnical and Geoenvironmental Engineering, 141(9): 04015039. https://doi.org/10.1061/(asce)gt.1943-5606.0001335
      Esteban, M., Takagi, H., Nicholls, R. J., et al., 2020. Adapting Ports to Sea-Level Rise: Empirical Lessons Based on Land Subsidence in Indonesia and Japan. Maritime Policy & Management, 47(7): 937-952. https://doi.org/10.1080/03088839.2019.1634845
      Fu, X., Liang, S. D., Guo, H. L., et al., 2023. Characteristic Analysis of Tropical Storm Surges Affecting the Coastal Area of China in the Past 40 Years. Marine Forecasts, 40(6): 1-11(in Chinese with English abstract).
      Genovese, E., Green, C., 2015. Assessment of Storm Surge Damage to Coastal Settlements in Southeast Florida. Journal of Risk Research, 18(4): 407-427. https://doi.org/10.1080/13669877.2014.896400
      Hu, J. M., Wu, W., Tian, Y. X. Y., et al., 2022. A Comparative Study on Marine Disaster Prevention and Mitigation Systems between China and Japan. Marine Science Bulletin, 41(3): 349-360(in Chinese with English abstract).
      Ko, K. W., Park, H. J., Ha, J. G., et al., 2019. Evaluation of Dynamic Bending Moment of Disconnected Piled Raft via Centrifuge Tests. Canadian Geotechnical Journal, 56(12): 1917-1928. https://doi.org/10.1139/cgj-2018-0248
      Le, T. A., Takagi, H., Heidarzadeh, M., et al., 2019. Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-Enclosed Osaka Bay, Japan. Pure and Applied Geophysics, 176(10): 4139-4160. https://doi.org/10.1007/s00024-019-02295-0
      Lengkeek, H. J., 2022. Testing and Modeling of Sheet Pile Reinforced Dikes on Organic Soils Insights from the Eemdijk Full-Scale Failure Test (Dissertation). Delft University of Technology, Delft.
      Li, H. W., Xu, Z. G., Shi, J. Y., et al., 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413(in Chinese with English abstract).
      Mikami, T., Shibayama, T., Takagi, H., et al., 2016. Storm Surge Heights and Damage Caused by the 2013 Typhoon Haiyan along the Leyte Gulf Coast. Coastal Engineering Journal, 58(1): 1640005-1-1640005-27. https://doi.org/10.1142/S0578563416400052
      Mitobe, Y., Adityawan, M. B., Roh, M., et al., 2016. Experimental Study on Embankment Reinforcement by Steel Sheet Pile Structure against Tsunami Overflow. Coastal Engineering Journal, 58(4): 1640018-1-1640018-18. https://doi.org/10.1142/S0578563416400180
      Moriyasu, S., Oikawa, S., Taenaka, S., et al., 2016. Development of New Type of Breakwater Reinforced with Steel Piles against a Huge Tsunami. Nippon Steel Technical Report, 113: 64-70.
      Ou, X. D., Chen, G. Y., Tan, Z. J., et al., 2022. Stress and Deformation Analysis of Steel Sheet Pile Cofferdam under Tidal Action. Journal of Guangxi University (Natural Science Edition), 47(5): 1125-1134(in Chinese with English abstract).
      Peng, M., Zhang, J. L., Zhu, Y., et al., 2024. Experimental Study on Wave Attenuation and Stability of Ecological Dike System Composed of Submerged Breakwater, Mangrove, and Dike under Storm Surge. Applied Ocean Research, 151: 104144. https://doi.org/10.1016/j.apor.2024.104144
      Robertson, I. N., Paczkowski, K., Riggs, H. R., et al., 2013. Experimental Investigation of Tsunami Bore Forces on Vertical Walls. Journal of Offshore Mechanics and Arctic Engineering, 135(2): 021601. https://doi.org/10.1115/1.4023149
      Saha, P., Horikoshi, K., Takahashi, A., 2020. Performance of Sheet Pile to Mitigate Liquefaction-Induced Lateral Spreading of Loose Soil Layer under the Embankment. Soil Dynamics and Earthquake Engineering, 139: 106410. https://doi.org/10.1016/j.soildyn.2020.106410
      van Loon-Steensma, J. M., Schelfhout, H. A., Vellinga, P., 2014. Green Adaptation by Innovative Dike Concepts along the Dutch Wadden Sea Coast. Environmental Science & Policy, 44: 108-125. https://doi.org/10.1016/j.envsci.2014.06.009
      Wang, F. P., Shao, Y. Y., Lyu, B., et al., 2016. Experimental Study of the Wave Pressure on Seawall with Hinged Concrete Slab Mattress Revetment. Port & Waterway Engineering, (11): 18-24(in Chinese with English abstract).
      Wang, X. W., 2017. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed (Dissertation). Tsinghua University, Beijing(in Chinese with English abstract).
      Wang, Y. Q., Xu, D., He, Z. G., et al., 2020. Experimental Study on Sand Dike Breaching by Wave Overtopping. Applied Ocean Research, 101: 102195. https://doi.org/10.1016/j.apor.2020.102195
      Wei, S., Deng, C. L., Liang, R. Z., et al., 2020. Model Testing on Deformation Characteristics of the Locking Steel Pipe Pile Retaining Structure by Using 3D Printing. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3676-3686(in Chinese with English abstract).
      Zhang, Y., Ye, J. H., 2021. Physical Modelling of the Stability of a Revetment Breakwater Built on Reclaimed Coral Calcareous Sand Foundation in the South China Sea-Random Waves and Dense Foundation. Ocean Engineering, 219: 108384. https://doi.org/10.1016/j.oceaneng.2020.108384
      Zhu, Y., 2022. Study on Static and Dynamic Characteristics and Stability of Double Steel Sheet Pile Cofferdam in Coastal Zone (Dissertation). Tongji University, Shanghai(in Chinese with English abstract).
      Zhu, Y., Lin, J., Peng, M., 2022. Experimental Study on Influence of Standing Waves and near Breaking Waves on a Double Steel Sheet Pile Cofferdam. Advances in Science and Technology of Water Resources, 42(1): 85-90, 102(in Chinese with English abstract).
      陈培波, 2015. 波浪对石笼护面块体作用的试验研究(硕士学位论文). 大连: 大连理工大学.
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险?. 地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      付翔, 梁森栋, 郭洪琳, 等, 2023. 中国沿海40年台风风暴潮特征研究. 海洋预报, 40(6): 1-11.
      胡金铭, 武文, 田野小雨, 等, 2022. 中日海洋防灾减灾体系对比研究. 海洋通报, 41(3): 349-360.
      李宏伟, 徐志国, 史健宇, 等, 2024. 基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁. 地球科学, 49(2): 403-413. doi: 10.3799/dqkx.2023.168
      欧孝夺, 陈广源, 谭智杰, 等, 2022. 潮汐作用下钢板桩围堰受力变形分析. 广西大学学报(自然科学版), 47(5): 1125-1134.
      王飞朋, 邵宇阳, 吕博, 等, 2016. 混凝土铰链排护坡式海堤波压力试验研究. 水运工程, (11): 18-24.
      王小雯, 2017. 波浪作用下饱和砂质海床液化机理研究(博士学位论文). 北京: 清华大学.
      韦实, 邓成龙, 梁荣柱, 等, 2020. 基于3D打印的锁口钢管桩围护结构变形特性试验研究. 岩石力学与工程学报, 39(增刊2): 3676-3686.
      朱艳, 2022. 海岸带双排钢板桩围堰静动力学特性及稳定性研究(博士学位论文). 上海: 同济大学.
      朱艳, 林靖, 彭铭, 2022. 立波和近破波对双排钢板桩围堰作用的试验研究. 水利水电科技进展, 42(1): 85-90, 102.
    • 加载中
    图(18)
    计量
    • 文章访问数:  102
    • HTML全文浏览量:  12
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-10
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回