GEOCHEMICAL FEATURES AND ORIGIN OF CONTINENTAL FLOOD BASALTS
-
摘要: 快速上涌的大陆溢流玄武岩(CFB), 与大陆裂开存在密切的成因联系.CFB总体岩石及地球化学成分均一, 富集同位素及不相容元素, 但一些样品含有明显的亏损成分, 反映出普遍的地幔不均一性.来自上下地幔边界及软流圈的地幔柱提供了CFB所需的主要物质和能量来源, 地壳混染作用对CFB的成分影响不大, 而受俯冲带脱水流体以及热地幔柱自身与围岩发生的交代作用影响.交代岩石圈地幔对CFB产生重要影响, 很好地解释了CFB所具备的微量元素和同位素特征.
-
关键词:
- 大陆溢流玄武岩(CFB) /
- 大陆裂开 /
- 大陆岩石圈地幔(CLM) /
- 地幔柱 /
- 交代作用
Abstract: A close genetic relationship is present between the rapidly upwelling continental flood basalts(CFB)and the continent rift. On the whole, the petrologic and geochemical compositions are homogeneous and enriched with isotopes and incompatible trace elements. However, some samples contain conspicuous depleted compositions, reflecting a general mantle heterogeneity. The mantle plume originating from upper/lower mantle boundary or asthenosphere might have served as the major materials and energies required for CFB that has not been fully assimilated by the crust. The metasomatism between the dehydrated fluid in the subduction zone or the thermal mantle plume itself and its wall rocks determines that the metasomatic lithosphere mantle with a great effect on the formation of CFB, is a major cause of the trace elements and isotope characteristics of CFB. -
图 8 主要地质单元微量元素原始地幔标准化图解
CLM(average).大陆岩石圈地幔的平均值[30]; N-MORB.正常大洋中脊玄武岩; CC.大陆地壳
Fig. 8. Primitive mantle-normalized pattern of incompatible elements of major geological units
-
[1] Richardson S G, Erlank A J, Duncan A R, et al. Correlated Nd, Sr and Pb isotope variation in Walvis Ridge basalts and implications for the evolution of their mantle source[J]. Earth Planet Sci Lett, 1982, 59: 327-342. doi: 10.1016/0012-821X(82)90135-2 [2] Coffin M F, Eldholm O. Volcanism and continental break-up: a global complication of igneous provinces[A]. In: Storey B C, Alabaster T, Pankhurst R J, eds. Magmatism and the causes of continental break-up[C]. London: Geological Society, 1992. 17-30. [3] Gibson S A, Thompson R N, Leat P T, et al. Asthenosphere-derived magmatism in the Rio Grande rift, western USA: implications for continental break-up[A]. In: Storey B C, Alabaster T, Pankhurst R J, eds. Magmatism and the causes of continental break-up[C]. London: Geological Society, 1992. 61-89. [4] Meschede M. A method of discrimination between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chem Geol, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5 [5] Ellam R M, Cox K G. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and mantle lithosphere[J]. Earth Planet Sci Lett, 1991, 105: 330-342. doi: 10.1016/0012-821X(91)90141-4 [6] Lightfoot P C, Hawkesworth C J, Devey C W, et al. Source and differentiation of Deccan trap lavas: implications of geochemical and mineral chemical variation[J]. J Petrol, 1990, 31(5): 1165-1200. doi: 10.1093/petrology/31.5.1165 [7] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth Planet Sci Lett, 1991, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6 [8] Palacz Z A, Saunders A D. Coupled trace element and isotope enrichment in the Cook-Austral-Samaa islands, southwest Pacific[J]. Earth Planet Sci Lett, 1986, 79: 270-280. doi: 10.1016/0012-821X(86)90185-8 [9] Wright E, White W M. The origin of Samoa: new evidence from Sr, Nd and Pb isotopes[J]. Earth Planet Sci Lett, 1987, 81: 151-162. doi: 10.1016/0012-821X(87)90152-X [10] Arndt N T, Czamanske G K, Wooden J L, et al. Mantle and crustal contributions to continental flood volcanism[J]. Tectonophysics, 1993, 223: 39-52. doi: 10.1016/0040-1951(93)90156-E [11] Lightfoot P C, Hawkesworth C J, Hergt J. Romobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pbisotope evidence from picritic and tholeiitic lavas of the Noril'sk district, Siberian Trap, Russia[J]. Contrib Mineral Petrol, 1993, 114: 171-188. doi: 10.1007/BF00307754 [12] Griffiths R W, Campbell I H. Stirring and structure in mantle starting plumes[J]. Earth Planet Sci Lett, 1990, 99: 66-78. doi: 10.1016/0012-821X(90)90071-5 [13] Hauri E H, Whitehead J A, Hart S R. Fluid dynamic and geochemical aspects of entrainment in mantle plumes[J]. J Geophys Res, 1994, 99: 24275-24300. doi: 10.1029/94JB01257 [14] Saunders A D, Storey M, Kent R W, et al. Consequence of plume-lithosphere interactions[A]. In: Storey B C, Alabaster T, Pankhurst R J, eds. Magmatism and the causes of continental break-up[C]. Geological society special publication No 68. London: Geological Society, 1992. 41-60. [15] McKenzie D. Some remarks on the movement of small melt fractions in the mantle[J]. Earth Planet Sci Lett, 1989, 95: 53-72. doi: 10.1016/0012-821X(89)90167-2 [16] Fitton J G, James D, Leeman W P. Basic magmatism associated with the Late Cenozoic extension in the western United States: compositional variations in space and time[J]. J Geophys Res, 1991, 96: 13963-13711. [17] Menzies M A. Petrology and geochemistry of the continental mantle: an historical perspective[A]. In: Menzies M A, ed. Continental mantle[C]. Oxford: Oxford Science Publications, 1990. 31-54 [18] Gallagher K, Hawkesworth C. Dehydration melting and the generation of continental flood basalts[J]. Nature, 1992, 358: 57-59. doi: 10.1038/358057a0 [19] Hill R I. Starting plumes and continental break-up[J]. Earth Planet Sci Lett, 1991, 104: 398-416. doi: 10.1016/0012-821X(91)90218-7 [20] Campbell I H. The mantle's chemical structure: insights from the melting products of mantle plumes[A]. In: Jackson I N S, ed. The earth' s mantle: composition, structure and evolution[C]. Cambridge: Cambridge University Press, 1998. 259-310. [21] Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts and continental breakup[J]. Earth Planet Sci Lett, 1999, 166(3-4): 177-195. doi: 10.1016/S0012-821X(98)00282-9 [22] Anderson D L. Isotopic evolution of the mantle: a model[J]. Earth Planet Sci Lett, 1982, 57: 13-24. doi: 10.1016/0012-821X(82)90169-8 [23] Boyd F R. Compositional distinction between oceanic and cratonic lithosphere[J]. Earth Planet Sci Lett, 1989, 96: 15-26. doi: 10.1016/0012-821X(89)90120-9 [24] Morgan W J. Convection plumesin the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0 [25] Kerr A C, SaundersA D, Tarney J, et al. Depleted mantle-plume geochemical signatures: no paradox for plume theories[J]. Geology, 1995, 23: 843-846. [26] Arndt N T, Kerr A C, Tarney J. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts[J]. Earth Planet Sci Lett, 1997, 146: 289-301. doi: 10.1016/S0012-821X(96)00219-1 [27] Class C, Goldstein S L. Plume-lithospheric interaction in the ocean basin: constraints from the source mineralogy[J]. Earth Planet Sci Lett, 1997, 150: 245-260. doi: 10.1016/S0012-821X(97)00089-7 [28] Jackson I N S. The earth' s mantle: composition, structure and evolution[M]. Cambridge: Cambridge University Press, 1998. 1-309. [29] Arndt N T, Christensen U. The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints[J]. J Geophys Res, 1992, 97: 10967-10981. doi: 10.1029/92JB00564 [30] McDonough W F. Constraints on the composition of the continental lithospheric mantle[J]. Earth Planet Sci Lett, 1990, 101: 1-18. doi: 10.1016/0012-821X(90)90119-I [31] Furman T. Melting of metasomatized subcontinental lithosphere: undersaturated mafic lavas from Rungwe, Tanzania[J]. Contrib Mineral Petrol, 1995, 122: 97-115. doi: 10.1007/s004100050115 [32] Ringwood A E. Slab-mantle interactions 3, petrogenis of intraplate magmas and structure of the upper mantle[J]. Chem Geol, 1990, 82: 187-207. doi: 10.1016/0009-2541(90)90081-H [33] Munker C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques[J]. Chem Geol, 1998, 144(1-2): 23-45. doi: 10.1016/S0009-2541(97)00105-8