SOURCE OF HUICHIZI GRANITOID COMPLEX PLUTON IN NORTHERN QINLING, CENTRAL CHINA: CONSTRAINED IN ELEMENT AND ISOTOPIC GEOCHEMISTRY
-
摘要: 灰池子复式岩体是北秦岭造山带核部规模最大的花岗岩体, 它由3个深成岩体组成.花岗岩具有高SiO2 (6 6.86 %~ 73.48%), Al2O3 (14.44 %~ 16.32 %) 和Na2O (4.17%~4.78%), 低TiO2 (< 0.74%), MgO (< 1.18%) 和K2O (< 3.33 %) 的特征.花岗岩轻稀土元素富集(27.45 < w (La)N/w (Yb)N < 72.99), Eu为负—弱正异常, 微量元素Y的质量分数为(3.70~9.77)×10-6, Yb为(0.30~ 1.14)×10-6, Sr为(310~ 775)×10-6, w (Sr) /w (Y) 为47.87~ 114.36, 大离子亲石元素(Rb, Ba, Th, Sr等) 相对富集, 高场强元素(Nb, Ta, Ti, Zr) 相对亏损.同位素组成比较均匀, 0.5 12 31 < w (143Nd) /w (144Nd) < 0.5 12 38, 0.70 783 < w (87Sr) /w (86Sr) < 0.70 880, 0.95Ga < tDM < 1.0 9Ga, - 0.81 < ε (Nd, 437Ma) < 0.93, 且18 < ε (Sr, 437Ma) < 32, 这些特征与Adakitic质岩相似.笔者认为灰池子花岗岩是由深部下地壳新元古代玄武质岩石部分熔融形成的Adakitic质岩, 其形成与晚加里东—早海西期北秦岭杂岩地体南北裂陷海盆发生陆内双向俯冲有关.Abstract: Huichizi complex pluton, the largest granitoid pluton in the core of northern Qinling orogenic belt, is composed of three sequences. These granitoid rocks have higher SiO2 (66.86%-73.48%), Al2O3 (14.44%-16.32%), abundant Na2O (4.17%-4.78%), and lower TiO2 (< 0.74%), MgO (< 1.18%) and K2O (< 3.33%) mass fraction, and more enriched in LREE (27.45 < w (La)N/ w (Yb)N < 72.99), and distinct negative and weak positive Eu anomaly. In these granitoid rocks, Y, Yb, Sr mass fractions and w (Sr) / w (Y) ratio of trace elements vary respectively from 3.70×10-6 to 9.77×10-6 (< 18×10-6), 0.30×10-6 to 1.14×10-6 (< 1.90×10-6), 310×10-6 to 775×10-6 and 47.87 to 114.36. While those of Huichizi complex display multi element patterns with large positive ion lithophile elements (Rb, Ba, Th and Sr) anomalies and high negative field strong elements (Nb, Ta, Ti and Zr) anomalies and indicate the geochemical characteristics of calc alkalic granites and volcanic arc granites. All the granitoid rocks exhibit a similar range of Nd and Sr isotopic ratios: 0.512 31 < w (143Nd) / w (144Nd) < 0.512 38), 0.707 83 < w (87Sr) / w (86Sr) < 0.708 80, 0.95 Ga < tDM (depleted mantle model age) < 1.09 Ga, -0.81 < ε (Nd, 437 Ma) < 0.93 and 18 < ε (Sr, 437 Ma) < 32, and show the source of Huichizi complex from basic rocks. These characteristics are similar to those of the Adakitic rocks. The authors think that the granitoid rocks of Huichizi complex may have been the result of the subduction of the southern intracontinent rift along the Danfeng Shangnan fault by a north dipping of the northern intracontinent rift (Erlangping rift) and that along the Zhuyangguan Xiaguanying fault by a south dipping under the Northern Qinling block during late Caledonian-early Hercynian period. This subduction of the intracontinent rifts leads to the partial melting of Late Proterozoic underplating basic rocks of lower crust and the formation of the granitoid rocks of Huichizi complex.
-
图 1 灰池子花岗质复式岩体区域地质简图
1.峡河岩群; 2.秦岭岩群; 3.明朗河岩体草沟单元; 4.明朗河岩体下庄单元; 5.明朗河岩体东沟单元; 6.淇河岩体颜坪单元; 7.淇河岩体黄泥盖单元; 8.淇河岩体南坪单元; 9.蔡家沟岩体姚家岔单元; 10.蔡家沟岩体后拐岔单元; 11.蔡家沟岩体谷谷庵单元; 12.采样位置及编号; 13.平移断层; 14.片麻理产状; 15.叶理产状; 16.韧性剪切带; 17.涌动型侵入接触界线; 18.脉动型侵入接触界线; 19.高压、超高压变质带
Fig. 1. Regional geological map of Huichizi granitoid complex pluton in northern Qinling, Central China
图 2 灰池子复式岩体花岗岩稀土元素配分曲线(球粒陨石标准值见文献[34])
Fig. 2. Chondrite-normalized REE patterns for granites of Huichizi complex pluton
图 3 灰池子复式岩体花岗岩微量元素蛛网图(原始地幔标准值见文献[34])
Fig. 3. Primitive mantle-normalized spider diagram for granites of Huichizi complex pluton
图 4 w (Y+Nb) /w (Rb) 关系图解(据Pearce等[42])
Fig. 4. w (Y+Nb) vs w (Rb) diagramVAG.火山弧花岗岩; S-COLG.同碰撞花岗岩; ORG.洋中脊花岗岩; WPG.板内花岗岩
表 1 灰池子复式岩体花岗岩和秦岭岩群变质岩主量元素分析结果
Table 1. Analysis data of major elements for granites of Huichizi complex pluton and for metamorphic rocks of Qinling Group
表 2 灰池子复式岩体花岗岩CIPW标准矿物计算
Table 2. CIPW standard minerals calculated data for granites of Huichizi complex pluton
表 3 灰池子复式岩体花岗岩和秦岭岩群变质岩微量元素分析结果
Table 3. Analysis data of trace elements for granites of Huichizi complex pluton and for metamorphic rocks of Qinling Group
表 4 灰池子复式岩体花岗岩同位素分析结果
Table 4. Nd and Sr isotopic analysis data for granites of Huichizi complex pluton
-
[1] 严阵, 尚瑞钧. 陕西花岗岩[M]. 西安: 西安交通大学出版社, 1985. 68-71, 293-302. [2] 尚瑞钧, 严阵. 秦巴花岗岩[M]. 武汉: 中国地质大学出版社, 1988. 69-137. [3] 李伍平, 王涛, 曹惠锋. 东秦岭灰池子复式杂岩体岩石谱系单位划分及其地质意义[J]. 中国区域地质, 1995, (2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD502.007.htm [4] 胡受奚, 郭继春, 卢欣祥. 东秦岭加里东褶皱带原地-准原地改造型花岗岩特征[J]. 岩石学报, 1989, (1): 49-58. doi: 10.3321/j.issn:1000-0569.1989.01.006 [5] 张正伟. 东秦岭灰池子花岗岩基岩石地球化学特征及其成因[J]. 岩石学报, 1991, (3): 88-94. doi: 10.3321/j.issn:1000-0569.1991.03.011 [6] 郭继春, 胡受奚, 卢欣祥, 等. 东秦岭灰池子花岗岩成岩机理的研究[J]. 地球化学, 1994, 23(增刊): 154-161. [7] 李伍平, 王涛. 北秦岭灰池子复式杂岩体的地质特征及其成因[J]. 矿物岩石, 1995, (4): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS503.001.htm [8] 李伍平, 王涛, 王晓霞. 北秦岭灰池子复式岩体单颗粒锆石年龄及其地质意义[J]. 中国区域地质, 2000, 19(2): 172-174. doi: 10.3969/j.issn.1671-2552.2000.02.011 [9] 黄萱, 吴利仁. 陕西地区岩浆岩Nd、Sr同位素特征及其与大地构造发展的联系[J]. 岩石学报, 1990, (2): 1-8. doi: 10.3321/j.issn:1000-0569.1990.02.001 [10] 骆庭川, 张宏飞, 张本仁. 北秦岭丹凤-西峡地区古岛弧花岗岩类成分极性及原因探讨[J]. 地球科学——中国地质大学学报, 1993, 18(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199301010.htm [11] 张宏飞, 骆庭川, 张本仁. 北秦岭灰池子花岗岩基成岩物质来源探讨[J]. 矿物岩石, 1994, (1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS401.008.htm [12] 张宏飞, 赵志丹, 骆庭川, 等. 从岩石Sm-Nd同位素模式年龄论北秦岭酸性组分增生和酸性组分深部性质[J]. 岩石学报, 1995, 11(2): 160-170. doi: 10.3321/j.issn:1000-0569.1995.02.008 [13] 张宏飞, 张本仁, 赵志丹, 等. 东秦岭造山带花岗岩类长石铅同位素组成及其构造意义[J]. 地质学报, 1997, 71 (2): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199702005.htm [14] 陈岳龙, 张本仁, 帕拉提. 阿布都卡得尔. 北秦岭丹凤地区早古生代花岗岩的Pb、Sr、Nd同位素地球化学特征[J]. 地质科学, 1995, 30(3): 247-258. [15] 陈岳龙, 杨忠芳. 北秦岭花岗岩类形成的Sm-Nd同位素分馏与混合作用[J]. 地球学报, 1997, 18(增刊): 45 -48. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DQXB199711001016.htm [16] 李伍平, 王涛. 北秦岭灰池子复式岩体的面理特征及其地质意义[J]. 西北地质, 1996, 17(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI602.001.htm [17] 王晓霞, 王涛, 李伍平. 北秦岭灰池子花岗岩体叶理的形成初探[J]. 地质构造学刊, 1996, (1): 18-22. [18] 王涛, 李伍平. 中华人民共和国1: 5万狮子坪幅区域地质图及说明书[M]. [s.l.]:[s.n.], 1996. [19] 王涛, 王晓霞, 李伍平. 试论花岗岩体的复合岩体机制及其岩体空间问题[J]. 地质论评, 1999, 45(2): 142-150. doi: 10.3321/j.issn:0371-5736.1999.02.006 [20] 王涛, 张国伟, 王晓霞, 等. 花岗岩体生长方式及构造运动学、动力学意义——以东秦岭造山带核部花岗岩体为例[J]. 地质科学, 1999, 34(3): 326-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199903007.htm [21] Wang T, Wang X X, Li W P. Evaluation of multiple emplacement mechanisms: the Huichizi pluton, Qinling orogenic belt, Central China[J]. J Struct Geol, 2000, 22: 505-518. doi: 10.1016/S0191-8141(99)00169-8 [22] 张维吉, 王全庆, 胡能高, 等. 东秦岭地质走廊研究[M]. 西安: 陕西科学技术出版社, 1996. 5-41. [23] 胡能高, 杨家喜, 王涛, 等. 东秦岭秦岭岩群中榴辉岩的发现及其地质意义[J]. 西安地质学院学报, 1994, 16 (2): 105-106. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX402.018.htm [24] 胡能高, 杨家喜, 赵东林. 北秦岭榴辉岩Sm-Nd同位素年龄[J]. 矿物学报, 1996, 16(4): 349-352. doi: 10.3321/j.issn:1000-4734.1996.04.003 [25] 胡能高, 徐伯青, 赵东林. 北秦岭造山带榴辉岩及相关岩石的地球化学特征[J]. 西安地质学院学报, 1997, 19 (1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX199701001.htm [26] 李曙光, 陈移之, 张国伟. 一个距今10亿年侵位的阿尔卑斯型橄榄岩体: 北秦岭晚元古代板块构造体制的证据[J]. 地质论评, 1991, 37(3): 235-242. doi: 10.3321/j.issn:0371-5736.1991.03.005 [27] 董云鹏, 周鼎武, 张国伟. 东秦岭松树沟超镁铁岩侵位机制及其构造演化[J]. 地质科学, 1997, 32(2): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX702.005.htm [28] 周鼎武, 董云鹏, 刘良, 等. 松树沟元古宙蛇绿岩Nd、Sr、Pb同位素地球化学特征[J]. 地质科学, 1998, 33(1): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX801.004.htm [29] 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11(2): 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002 [30] 周鼎武, 张成立, 韩松, 等. 东秦岭早古生代两条不同构造-岩浆杂岩带的形成构造环境[J]. 岩石学报, 1995, 11(2): 115-126. doi: 10.3321/j.issn:1000-0569.1995.02.001 [31] 张宗清, 伍家善, 叶笑江. 阜平群下部太古代变质岩石的REE、Rb-Sr和Sm-Nd年龄及其意义[J]. 地球化学, 1991, 2: 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199102002.htm [32] 王晓霞, 王涛, 李伍平. 秦岭杂岩中花岗质片麻岩的地球化学特征及成因[J]. 矿物岩石, 1997, (3): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS703.013.htm [33] 张宏飞, 骆庭川, 张本仁. 北秦岭漂池岩体的源区特征276地球科学——中国地质大学学报第26卷及其形成的构造环境[J]. 地质论评, 1996, 42(3): 209 -214. doi: 10.3321/j.issn:0371-5736.1996.03.003 [34] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[A]. In: Saundern A D, Norry M J, eds. Magmatism in the ocean basins[C]. Geological Society Special Publication, 1989, (42): 313-345. [35] 欧阳建平, 张本仁, 韩吟文, 等. 北秦岭基性火山岩地球化学特征与上地幔岩浆源区性质[J]. 地球科学——中国地质大学学报, 1993, 18(1): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199301011.htm [36] 张宗清, 刘敦一, 付国民. 北秦岭变质地层同位素年代学研究[M]. 北京: 地质出版社, 1994. 11-56. [37] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0 [38] Defant M J, Drummond M S. Mount St Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc[J]. Geology, 1993, 21: 547-550. [39] Atherton M P, Petord N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362: 144-146. doi: 10.1038/362144a0 [40] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith[J]. J Petrology, 1996, 37: 1491-1521. doi: 10.1093/petrology/37.6.1491 [41] Muir R J, Weaver S D, Bradshaw J D, et al. Geochemistry of the Cretaceous separation point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere[J]. J Geol Soclond, 1995, 152: 689-701. doi: 10.1144/gsjgs.152.4.0689 [42] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J Pertol, 1984, 25: 956-983. [43] Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[A]. In: Coward M P, ReisA C, eds. Collision tectonics[C]. [s. l. ]: Spec Publ Geol Sco, 1986. 67-81. [44] Kay S M, Ramous V A, Marquez M. Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South American[J]. J Geol, 1993, 101: 703-714. doi: 10.1086/648269 [45] Morris P S. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan[J]. Geolo-gy, 1995, 23: 395-398. doi: 10.1130/0091-7613(1995)023<0395:SMAAEO>2.3.CO;2 [46] Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral volcanic zone[J]. Contrib Miner Petrol, 1996, 123: 263-281. doi: 10.1007/s004100050155 [47] Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46: 411-429. doi: 10.1016/S0024-4937(98)00076-0 [48] Xu J F, Wang Q, Yu X Y. Geochemistry of high-Mg an-desites and Adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling mountains, Central China: evidence of partial melting of the subducted paleo-Tethyan crust[J]. Geochemical Journal, 2000, 34: 359-377. doi: 10.2343/geochemj.34.359 [49] 吴福元, 江博明, 林强. 中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J]. 科学通报, 1997, 42 (20): 2188-2192. doi: 10.3321/j.issn:0023-074X.1997.20.017 [50] Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth Planet Sci Lett, 1994, 121: 227-244. doi: 10.1016/0012-821X(94)90042-6 [51] Wang Q, Xu J, Wang J, et al. The recognition of Adakite-type gneisses in the north Dabie mountains and its implication to ultrahigh pressure metamorphic geology[J]. Chinese Science Bulletin, 2000, 45(21): 1927-1933. doi: 10.1007/BF02909680 [52] Hirose K. Melting experiments on lherzolite LKB-1 under hydrous conditions and generation of high-magnesian andesitic melt[J]. Geology, 1997, 25(1): 42-44. doi: 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2 [53] 张国伟, 孟庆仁, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学(B辑), 1995, 25(9): 994-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm [54] 张宗清, 唐索寒, 宋彪, 等. 秦岭造山带晋宁期强烈地质事件及其构造背景[J]. 地球学报, 1997, 18(增刊): 43 -45. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DQXB199711001015.htm [55] 王涛, 张国伟, 王晓霞, 等. 一种可能的多陆块、小洋盆、弱俯冲的动力学特征及其花岗岩演化特点——以秦岭造山带核部花岗岩为例[J]. 南京大学学报(自然科学), 1999, 35(6): 660-667. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199906001.htm [56] 姜常义, 苏生瑞, 赵太平, 等. 北秦岭侵入带与晋宁运动[M]. 北京: 地质出版社, 1998. 22-23, 62-76. [57] Rapp R P, Wastson E B. Dehydration melting of metabasalt at 8-32 kbar: implication for continental growth and crust-mantle recycling[J]. J Petrol, 1995, 36: 891-931. doi: 10.1093/petrology/36.4.891 [58] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160: 335-356. doi: 10.1016/S0009-2541(99)00106-0 [59] Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: implication for the origin of Adakites[J]. Contrib Mineral Petrol, 1994, 117: 394-409. doi: 10.1007/BF00307273 [60] Guffanti M, Clynne M A, Muffler L J P. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California and minimum constraints on basalt influx to the lower crust[J]. J of Geophysical Research, 1996, 101: 3001-3013. [61] 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D), 1997, 26(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199603000.htm [62] 张本仁. 秦巴区域地球化学文集[M]. 武汉: 中国地质大学出版社, 1990. 67-84.