GEOCHEMICAL INDICATORS OF ORGANIC CONTAMINATION IN GROUNDWATER: A CASE STUDY IN HENAN OILFIELD
-
摘要: 经过野外现场调查和取样分析及室内研究得知南阳油田地下水已遭受不同程度的有机物污染, 且污染范围可能进一步向油田南部扩散.根据近似地下水流线方向上地下水中总油质量浓度和Fe, Mn等无机组分的变化势态, 结合含水介质化学分析结果, 发现硫酸盐、Fe和Mn可作为地下水有机污染的地球化学标志物.在含水介质中Fe和Mn质量浓度较高的地方, 地下水有机污染物降解速度快, 含水介质中Fe和Mn的氧化物和氢氧化物的还原作用导致了含水层介质中Fe和Mn的缺乏和地下水中溶解Fe和Mn的积聚; 在含水介质中Fe和Mn质量浓度低的地方, 地下水中的有机物质量浓度并没有降低, 相应地地下水中溶解Fe和Mn的质量浓度也很低.同时, 由于有机污染物的存在使地下水中硫酸盐被还原, 导致地下水中硫酸盐质量浓度偏低, 且地下水中Fe对有机物污染的敏感性比Mn强.Abstract: Field and laboratory investigations indicate that organic contaminants have polluted the groundwater and the contaminated area is extending further to the southern part of the Henan Oilfield. Based on the relationship among total oil, inorganic components (such as sulphate, dissolved iron and manganese), and chemical composition of aquifer matrix along the groundwater flow path, sulphate, dissolved iron and manganese are inferred as geochemical indicators of organic contamination of groundwater. The organic contaminants are degraded rapidly in the aquifer where the content of iron and manganese of aquifer matrix is high. The reduction of ferric and manganese oxyhydroxides has resulted in the lack of the iron and manganese in the aquifer and the accumulation of dissolved iron and manganese in the groundwater. In contrast, the organic pollutants are degraded slowly where the content of ferric and manganese oxyhydroxides of aquifer matrix is low, and so are the concentrations of dissolved iron and manganese of groundwater. Besides, the reduction of sulfate has led to the decrease in the sulfate concentration of groundwater and dissolved iron is more sensitive to the organic contaminants than manganese.
-
Key words:
- adsorption /
- degradation /
- geochemical indicator /
- redox /
- sensitivity
-
图 2 水化学成分三线图解(图中标号对应表 1的序号)
Fig. 2. Trilinear diagram of chemical compositions of groundwater
表 1 水质分析结果
Table 1. Hydrochemistry of groundwater samples
-
[1] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 45-55. [2] Borden R C, Carlos A G, Mark T B. Geochemical indicators of intrinsic bioremediation[J]. Groundwater, 1995, 33(2): 180-189. doi: 10.1111/j.1745-6584.1995.tb00272.x [3] Allen-King R M, Larry D M, Mark R T. Organic carbon dominated trichloroethene sorption in a clay-rich glacial deposit[J]. Groundwater, 1997, 35(1): 124-130. doi: 10.1111/j.1745-6584.1997.tb00067.x [4] Boyd S A, Jiunn-Fwn L, Max M M. Attenuating organic contaminant mobility by soil modification[J]. Nature, 1988, 333(26): 345-347. [5] 王东海, 李广贺, 贾道昌. 石油类污染物在沙砾石层中的迁移与分布[J]. 环境科学, 1998, 19(5): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ805.004.htm [6] Lovely D K, Baedecker M J, Lonergan D J, et al. Oxidation of aromatic contaminants coupled to microbial iron reduction[J]. Nature, 1989, 339(25): 297-300. [7] Beller H R, Grbic-Gaic D, Reinhard M. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process[J]. Applied Environmental Microbiology, 1992, 58: 786-793. doi: 10.1128/aem.58.3.786-793.1992