Effect of the Three Gorges Project Storing on Stability of T8-T12 Fracture Segment of Hazardous Rocks in Lianziya
-
摘要: 三峡水库蓄水后, 已治理的链子崖危岩体, 特别是T8—T12缝段岩体将受到江水的长期作用和影响, 直接关系到防治工程的成败.通过大量实地调查和岩体测试, 着重论述水库蓄水对T8—T12裂缝及其充填物的作用和影响; 并以此为基础, 用改进的Sarma法对该段危岩体的稳定性进行重新计算和评价, 得出一系列新的结论: 总体上, 长江水位抬升后, 水对裂缝的溶蚀作用和劈裂作用, 使裂缝整体加宽, 不利于危岩体的稳定; 考虑岩体和承重阻滑键取长期强度和江水位骤然升降, 以及地震影响, 链子崖危岩体整体稳定性将恶化, 但NE20°方向稳定程度好于NW 35 0°.Abstract: The controlled Lianziya hazardous rock, especially T8-T12 fracture segment will be affected over a long period of time when the Three Gorges reservoir stores water, which also relates to efficacy of the control project to the rock. Through mass field investigations and rock tests, this paper concerns with the long term effects of the reservoir to T8-T12 fracture segment and its deposits, and also recalculates the stability of the rock by using improved Sarma program. Then some new conclusions are obtained: generally, when the water level of Yangtze River rises, the water actions of erosion and tension will widen the fractures, and deteriorate the rock stability. On considering long term strengths of rock and control project, as well as rapid water rising and dropping, and also earthquake affection, the stability of hazardous rock will turn worse than before, whereas the condition in NE20° direction will be better than that in NW350°.
-
Key words:
- the Three Gorges Project /
- storing /
- stability /
- control project.
-
表 1 裂缝充水静水压力计算值
Table 1. Calculated values of hydrostatic pressure in fractures
表 2 裂缝中段应力强度因子计算值
Table 2. Calculated values of stress intensity factor in mid-segment of fractures
表 3 危岩体稳定性评价计算参数取值表
Table 3. Calculation parameters for stability appraise of hazardous rock
表 4 NW350°方向和NE20°方向稳定系数K计算结果
Table 4. Stability coefficient K of NW350° and NE20°
-
[1] 胡亚波. 三峡工程蓄水对链子崖危岩体软弱夹层影响研究[J]. 湖北地矿, 1999, 13 (增刊): 58-63.HU Y B. Affection to weak interlayer of Lianziya hazardous rock when the Three Gorges Project filling[J]. Hubei Ggeology and Mining, 1999, 13 (supplement): 58-63. [2] 刘世凯, 宋春节, 袁涛, 等. 长江三峡工程库区交通工程地质环境研究[J]. 地球科学——中国地质大学学报, 2001, 26(4): 340-342. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200104002.htmLIU S K, SONG C J, YUAN T, et al. Research on communication engineering geology environment in the Three Gorges reservoir area[J]. Earth Science-Journal of China University of Geosciences, 2001, 26(4): 340-342. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200104002.htm [3] 晏鄂川, 唐辉明, 杨裕云, 等. 陆浑水库坝基断层破碎带渗透稳定性评价[J]. 地球科学——中国地质大学学报, 2001, 26(1): 80-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200101017.htmYAN E C, TANG H M, YANG Y Y, et al. A systemic evaluation of seepage stability for fracture zone in Luhun dam foundation[J]. Earth Science-Journal of China University of Geosciences, 2001, 26(1): 80-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200101017.htm [4] 刘传正. 链子崖危岩体T8-T12缝段开裂变形机制的研究[J]. 工程地质学报, 1995, 3 (2): 28-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ502.003.htmLIU C Z. Study on mechanism of fracture distortion in T8-T12segment of Lianziya hazardous rock[J]. Engineering Geology Journal, 1995, 3 (2): 28-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ502.003.htm [5] 刘传正. 链子崖T8-T12缝段地下水侵蚀性及工程对策[J]. 地质灾害与环境保护, 1996, (1): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB601.009.htmLIU C Z. Erosion of groundwater to T8-T12segment of Lianziya hazardous rock and engineering countermeasures [J]. Geology Disaster and Environment Protection, 1996, (1): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB601.009.htm [6] 汤连生, 王思敬. 水-岩化学作用对岩体变形破坏力学效应研究进展[J]. 地球科学进展, 1999, 14 (5): 61 - 69.TANG L S, WANG S J. Progress in the study on mechanical effect of the chemical action of water-rock on deformationand failure of rock[J]. Advance in Earth Sciences, 1999, 14(5): 61-69. [7] 李继昌, 邵圣福. 武汉至十堰高速公路西段隧道围岩稳定性研究[J]. 地球科学——中国地质大学学报, 2001, 26(4): 398-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200104017.htmLI J C, SHAO S F. Stability of tunnel wall rocks of western section of Wuhan-Shiyan speedway[J]. Earth Science -Journal of China University of Geosciences, 2001, 26 (4): 398-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200104017.htm [8] 方灯明. 南京长江二桥南汊桥塔基主要工程地质问题与力学参数的确定[J]. 地球科学——中国地质大学学报, 2001, 26(4): 406-409. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200104019.htmFANG D M. Main problems and determination of foundation strength of pier of the second Nanjing bridge[J]. Earth Science-Journal of China University of Geosciences, 2001, 26(4): 406-409. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200104019.htm [9] 袁道先. "岩溶作用与碳循环"研究进展[J]. 地球科学进展, 1999, 14(5): 425-431. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200001015.htmYUAN D X. Progress in the study on karst processes and carbon cycle[J]. Advance in Earth Sciences, 1999, 14 (5): 425-431. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200001015.htm [10] 胡亚波. 链子崖危岩体深大裂缝形成机制的断裂力学研究[A]. 见: 湖北工程地质环境地质五十年[C]. 武汉: 中国地质大学出版社, 1999.291-297.HU Y B. Fracturemechanics researchonform mechanism of the deep-width fissurein Lianziya hazardous rock[A]. In: Five decades of engineering and environment geology in Hubei Province[C]. Wuhan: China University of Geosciences Press, 1999.291-297. [11] 邓清禄, 王学平. 黄土坡滑坡的发育历史: 坠覆-滑坡-改造[J]. 地球科学——中国地质大学学报, 2000, 25(1): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001009.htmDENG Q L, WANG X P. Growth history of Huangtupo landslide: down-slope overlapping-landsliding-modification [J]. EarthScience-JournalofChina University of Geosciences, 2000, 25(1): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001009.htm [12] 何庆芝, 郦正能. 工程断裂力学[M]. 北京: 航天航空大学出版社, 1993.70-77.HE Q Z, LI Z N. Engineering fracture mechanics[M]. Beijing: University of Space and Aviation Press, 1993. 70-77. [13] 唐辉明. 岩体断裂力学理论与工程应用[M]. 武汉: 中国地质大学出版社, 1990.45.TANG H M. Theory and engineering application of rock fracturemechanics[M]. Wuhan: China University of Geosciences Press, 1990.45. [14] Newman J C Jr, Raju I S. An empirical stress intensity factor equation for surface cracks[J]. Engineering Fracture Mechanics, 1981, 15: 189-192.