Discussion on Hydraulic Loading and Effluent Effect in Wastewater Infiltration land Treating Systems
-
摘要: 污水渗滤土地处理系统中, 水力停留时间与出水效果之间的关系, 直接涉及到系统的大小与出水效果之间的关系.一般认为各污染组分的去除率与水力停留时间之间符合一级反应动力学方程.从微生物生长动力学角度出发, 就此问题做了进一步讨论.结果表明, 各污染组分的出水浓度与水力停留时间之间的关系严格地说, 是一种类指数关系, 它实际是一条直线和一条负指数曲线叠加而成, 而并非纯指数关系.实际应用结果表明, 不同系统的处理效率可以通过一级反应速率常数KT进行对比评价.提高系统的处理效率可以围绕反映系统净化能力的综合指数KT, 从提高系统内微生物活性的角度出发, 以减小系统的占地及投资.Abstract: In the wastewater infiltration land treating systems, the relation between hydraulic residence time and effects of effluent is directly associated with the relation between system scale and effects of effluent. The relation between pollutants' removals and hydraulic residence time following first order dynamic equation is commonly accepted. This paper further discusses this question from the point of microorganism increasing dynamics.Resultsshow that, strictly speaking, the relation between concentrations of different pollutants in effluent and hydraulic residence time is an analogous exponential relation, but actually, its curve shows a superposition of a straight line and a negative exponential curve, but not a pure negative exponential curve. Application results verify that, treating efficiency of different systems can be compared and evaluated by the first order rate constants, KT. To improve the treating efficiency and reduce the land using and investment, we can adopt measures to improve the activities of microorganisms around the first order rate constants, KT, integrated indexes reflecting the purifying capability of different systems.
-
图 1 活塞流动模型物料衡算示意图[4]
Fig. 1. Plug flow model for materiel equilibrium calculations
表 1 国外一些构建湿地系统及本试验的一级反应速率常数对比
Table 1. Comparison of the first order rate constants of some foreign constructed wetlands and this experiment
-
[1] Conley L M. An assessment of the root zone method of wastewater treatment[J]. J Water Pollut Control Fed, 1991, 63(3): 239-247. [2] Walter H Z Ⅱ, Fuller J W. Performance of an artificial wetlands filter treating facultative lagoon effluent at Carville, Louisiana[J]. Water Environ Res, 1993, 65: 46-52. doi: 10.2175/WER.65.1.6 [3] 郑西来, 邱汉学, 荆静, 等. 沈抚灌区石油污染土壤恢复方案的数值模拟[J]. 地球科学——中国地质大学学报, 2000, 25(5): 462-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005003.htmZHENG X L, QIU H X, JING J, et al. Numerical modeling on elimination of oil polluted soils in Shenyang-Fushun irrigation area[J]. Earth Science-Journal of China University of Geosciences, 2000, 25(5): 462-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005003.htm [4] 马振民, 陈鸿汉, 刘立才. 泰安市第四系水文地质结构对浅层地下水污染敏感性控制作用研究[J]. 地球科学——中国地质大学学报, 2000, 25(5): 472-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005005.htmMA Z M, CHEN H H, LIU L C. Controlling effect of Quaternary hydrogeological structure on contaminating sensitivity of shallow groundwater, Taian city[J]. Earth Science-Journal of China University of Geosciences, 2000, 25(5): 472-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005005.htm [5] 张希衡. 废水厌氧生物处理工程[M]. 第一版. 北京: 中国环境科学出版社, 1995.135-141.ZHANG X H. Treatment engineering using anaerobic biology for wastewater[M]. First Edition. Beijing: China Environmental Science Press, 1995.135-141. [6] 侯杰, 李亚新. 具有弱透水层的多层介质含水系统中污染质运移数值模拟研究——以大庆市纳污湖泡区为例[J]. 地球科学——中国地质大学学报, 2000, 25(1): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001013.htmHOU J, LI Y X. Numerical simulation of pollutant migration in mult-i layer media water-bearing system containing aquitard: a case study of Tiebutie pool, Daqing city[J]. Earth Science-Journal of China University of Geosciences, 2000, 25(1): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001013.htm [7] 戚以政, 汪叔雄. 生化反应动力学与反应器[M]. 第二版. 北京: 化学工业出版社, 1999.226-230.QI Y Z, WANG S X. Kinetics of bio-reaction and reactor [M]. Second Edition. Beijing: Chemistry Industry Press, 1999.226-230. [8] 王增银, 辛选民, 常永生, 等. 运城解州地区地下水水质恶化形成原因及防治[J]. 地球科学——中国地质大学学报, 2000, 25(5): 477-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005006.htmWANG Z Y, XIN X M, CHANG Y S, et al. Formation causes and controlling measures of groundwater quality deterioration in Xiezhou area, Yuncheng city[J]. Earth Science-Journal of China University of Geosciences, 2000, 25(5): 477-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005006.htm [9] Reed S C, Brown D. Subsurface flow wetlands-a performance evaluation[J]. Water Environ Res, 1995, 67: 244 -248. doi: 10.2175/106143095X131420 [10] Burgoon P S, Reddy K R, DeBusk T A. Performance of subsurface flow wetlands with batch-load and continuousflow conditions[J]. Water Environ Res, 1995, 67: 855 -862. doi: 10.2175/106143095X131790 [11] 付素蓉, 王焰新, 蔡鹤生, 等. 城市地下水污染敏感性分析[J]. 地球科学——中国地质大学学报, 2000, 25(5): 482-486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005007.htmFU S R, WANG Y X, CAI H S, et al. Vulnerability to contamination of groundwater in urban regions[J]. Earth Science-Journal of China University of Geosciences, 2000, 25(5): 482-486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005007.htm [12] Gale P M, Reddy K R, Graetz D A. Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms[J]. Water Environ Res, 1993, 65: 162-168. doi: 10.2175/WER.65.2.9 [13] Kemp M C, George D B. Subsurface flow constructed wetlands treating municipal wastewater for nitrogen transformation and removal[J]. Water Environ Res, 1997, 69: 1254-1262. doi: 10.2175/106143097X126019 [14] Wittgren H B, Mếhlum T. Wastewater treatment wetlands in cold climates[J]. Wat Sci Tech, 1997, 35(5): 45-53. doi: 10.2166/wst.1997.0162