Primary Study of Geochemical Features of Deep Fluids and Their Effectiveness on Oil/Gas Reservoir Formation in Sedimental Basins
-
摘要: 以济阳坳陷东营凹陷和塔里木盆地塔中地区为例, 在前人深部流体研究的基础上, 应用同位素地球化学、有机地球化学及热力学定量模型, 对沉积盆地深部流体的活动特征及其油气成藏效应进行了初步的探讨.研究表明, 在东营凹陷不仅存在着幔源富二氧化碳流体(H2O +CO2) 的活动, 而且还存在着幔源富氢流体(H2O +CH4+H2) 的活动.塔里木盆地塔中地区也发现了幔源富二氧化碳的活动.深部流体上升过程中热能传递的定量研究表明, 幔源流体是良好的热能载体.东营凹陷和塔中地区的有机质异常热变现象证实了深部流体的热效应.有机质热演化生烃不仅需要热, 而且是个缺氢的过程, 富氢流体注入沉积盆地势必对油气的生成产生影响.加氢热模拟实验结果表明, 加氢可大幅度提高烃源岩的产烃率; 对腐泥型干酪根而言, 加氢生烃效应最显著的阶段是在生烃高峰之后, 产率可增加14 7%以上; 腐植型干酪根的加氢生烃效应在各个阶段都较显著.在东营凹陷和塔中地区分别发现了深部流体促进烃源岩生烃的现象.因此, 深部流体在能量上和物质上对油气的生成均可构成重要的影响.Abstract: This paper focuses on geochemical features of deep fluids (mainly mantle-derived fluid) and their effect on oil/gas reservoirs formation in Dongiyng sag, Jiyang depression and Central Tarim basin, by using isotopic geochemistry, organic geochemistry and thermodynamics. It is found that both CO2- (H2O+CO2) and H- (H2O+CH4+H2) rich fluids from the mantle are injected into Dongying sag and CO2-rich fluid in Central Tarim basin. The quantitative study of heat transformation of deep fluid ascendance shows that the mantle is an effective heat carrier. The evidence of thermal anomalies in Dongying sag and Central Tarim basin proves the existence of heat effect of deep fluids. Hydrocarbon generation from kerogen degragation not only needs heat but also actually requires hydrogen. It is known that mantle-derived, hydrogen-rich fluid may increase hydrocarbon production when the fluid meets source rocks in basins. Experimental hydrogenation simulation shows that hydrogen addition increases the production greatly. For sapropelic kerogen, the effect of hydrogenation becomes evident after fastigium of hydrocarbon generation and the production can increase up to 147%. While for humic kerogen, hydrocarbon production by hydrogenation can be increased at every stage of thermal evolution. It is found that deep fluids increase production rate of the source rocks in Dongying sag and Central Tarim basin. Hence it can be concluded that the mantle-derived fluids have great influence on hydrocarbon generation from source rocks in both energy and substance supply.
-
图 2 金刚石幔源包裹体w (H2) -w (CO2) 关系(数据据杜乐天[9]
Fig. 2. Plot of w (H2) -w (CO2) in diamond inclusions
表 1 东营凹陷基性火成岩幔源气相包体组分①
Table 1. Chemical components of inclusions in basic igneous rocks in Dongying sag①
表 2 塔中地区部分钻井中上奥陶统烃源岩热解数据分析
Table 2. Pyrogenation data of source rocks in Upper Ordovician of wells in Central Tarim basin
表 3 热模拟实验样品热解参数
Table 3. Pyrogenation data of samples for experimental simulation
-
[1] Navon O, HutcheonI D, RossmanGR, et al. Mantle-derived fluids in diamond micro-inclusions[J]. Nature, 1988, 335 (6193): 784-789. doi: 10.1038/335784a0 [2] 张铭杰, 王先彬, 李立武. 地幔流体组成[J]. 地学前缘, 2000, 7(2): 401-412. doi: 10.3321/j.issn:1005-2321.2000.02.009ZHANG M J, WANG X B, LI L W. Composition of mantle fluid[J]. Earth Science Frontiers, 2000, 7(2): 401-412. doi: 10.3321/j.issn:1005-2321.2000.02.009 [3] 戴金星, 宋岩, 戴春森, 等. 中国东部无机成因气及其气藏形成条件[M]. 北京: 科学出版社, 1995.DAI J X, SONG Y, DAI C S, et al. Inorganic origingas and its accumulation conditions in eastern China[M]. Bejing: Science Press, 1995. [4] 高波, 陶明信, 王万春. 深部热流体对油气成藏的影响[J]. 矿物岩石地球化学通报, 2001, 20(1): 30-34. doi: 10.3969/j.issn.1007-2802.2001.01.007GAO B, TAO M X, WANG W C. Influence of deeply sourced thermal fluid on the formation of hydrocarbon reservoirs[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20 (1): 30-34. doi: 10.3969/j.issn.1007-2802.2001.01.007 [5] 路凤香. 深部地幔及地幔流体[J]. 地学前缘, 1996, 3(3- 4): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX801.006.htmLU F X. Deep mantle and its fluids[J]. Earth Science Frontiers, 1996, 3(3-4): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX801.006.htm [6] Bell D R, Rossman G R. Waterin Earth's mantle: the role of nominally anhydrous minerals[J]. Science, 1992, 255: 1391 -1397. doi: 10.1126/science.255.5050.1391 [7] 杜乐天, 王驹. 气体地球动力学——一个重要的研究方向[J]. 地球科学进展, 1993, 8(6): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199306009.htmDU L T, WANG J. Gas geo-dynamics-an important research field[J]. Advance in Earth Sciences, 1993, 8(6): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199306009.htm [8] Haggerty S E. Superkimberlites: a geodynamic diamond window to the Earth's core[J]. EPSC, 1994, 122: 57-69. [9] 杜乐天. 烃碱流体地球化学原理[M]. 北京: 科学出版社, 1995.478, 490.DU L T. Geochemical principles of hydrcarbon alkali-fluids [M]. Beijing: Science Press, 1995.478, 490. [10] Badding JV, Hemley RJ, Mao HK. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride[J]. Nature, 1991, 253(5018): 421-424. [11] 陈丰. 氢——地球深部流体的重要源泉[J]. 地学前缘, 1996, 3(3-4): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY603.007.htmCHEN F. Hydrogen-the important source of fluid in Earth interior[J]. Earth Science Frontiers, 1996, 3(3-4): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY603.007.htm [12] Angino E E, Coveney R M. Hydrogen and nitrogen-origin, distribution, and abundance[J]. Oil & Gas Journal, 1984, 82 (3): 142-146. [13] Coveney R M, Goebel E D, Zeller E, et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bull, 1987, 71 (1): 39-48. [14] Marty B, Gunnlaugsson E, Jambon A, et al. Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland[J]. Chemical Geology, 1991, 91: 207-225. doi: 10.1016/0009-2541(91)90001-8 [15] LesniakP M, Sakai H, Ishibashi J. Mantle helium signal in the West Carpathians, Poland[J]. Geochemical Journal, 1997, 31 (6): 383-394. doi: 10.2343/geochemj.31.383 [16] 王国安, 申建中, 季美英. 塔北、塔中天然气中CO2的碳同位素组成及成因探讨[J]. 地质地球化学, 2001, 29(1): 36-39. doi: 10.3969/j.issn.1672-9250.2001.01.007WANG G A, SHEN J Z, JI M Y. Carbon istopotic composition and origin of carbon dioxide in natural gases in northern and central Tarim basin[J]. Geology-Geochemistry, 2001, 29 (1): 36-39. doi: 10.3969/j.issn.1672-9250.2001.01.007 [17] 钟广发, 马在田, 刘瑞林. 塔里木盆地奥陶系萤石脉- 油气叠合成藏作用——高分辨率成像测井资料提供的证据[J]. 高校地质学报, 2000, 6(4): 576-582. doi: 10.3969/j.issn.1006-7493.2000.04.010ZHONG GF, MAZ T, LIU RL. Polygenesis of fluorite veins and hydrocarbons in Ordovician in Tarim basin[J]. Geological Journal of China Universities, 2000, 6(4): 576-582. doi: 10.3969/j.issn.1006-7493.2000.04.010 [18] Duan Z, Moller N, Weare J H. Molecular dynamics simulation of pVt properties of geological fluids and ageneral equation of state of nonpolar and weakly polar gases up to2 000 k and 20 000 bar[J]. Geochim Cosmochim Acta, 1992, 56: 3839 -3845. doi: 10.1016/0016-7037(92)90175-I [19] Duan Z, Moller N, Weare J H. A general equation of state for super critical fluid mixtures and molecular dynamics simulation of mixture PVTX properties[J]. Geochim Cosmochim Acta, 1996, 60: 1209-1216. doi: 10.1016/0016-7037(96)00004-X [20] 孙睿, 胡文, 段振豪. 超临界流体热力学函数的理论计算[J]. 地质论评, 2000, 46(2): 167-177. doi: 10.3321/j.issn:0371-5736.2000.02.007SUN R, HU W X, DUAN Z H. Theoretical calculation of thermodynamic functions of super critical fluids[J]. Geological Review, 2000, 46(2): 167-177. doi: 10.3321/j.issn:0371-5736.2000.02.007 [21] Jin Q, Xiong S, Lu P. Catalysis and hydrogenation: volcanic activity and hydrocarbon generation in rift basins, eastern China [J]. Applied Geochemistry, 1999, 14(5): 547-558. doi: 10.1016/S0883-2927(98)00086-9 [22] Jin Z, Sun Y, Yang L. Influences of deep fluids on organic matter of source rocks from Dongying depression, East China [J]. Energy Exploration & Exploitation, 2001, 19(5): 479- 486.