Underpressure System and Forming Mechanism in the Shiwu Depression of Songliao Basin
-
摘要: 松辽盆地东南隆起区十屋断陷发育异常低压体系, 实测的地层压力梯度介于0.005~0.008 MPa/m.研究结果表明异常低压体系的形成既与地温梯度的降低有关, 又与新生代该区的地层抬升和剥蚀有关.此外, 天然气扩散作用对局部异常低压体系的形成具有一定的影响.研究区地层压力系统演化经历了从异常高压向异常低压演化过程, 这一过程决定了盆地不同演化时期的水流系统及其油气运聚特征, 从而使得十屋断陷具有石油成藏早且主要分布于断陷边缘、天然气成藏晚且主要分布于断陷中央的成藏特点.Abstract: Underpressure system developed in the Shiwu depression of Songliao basin with measured formation pressure gradient ranging between 0.005 MPa/m to 0.008 MPa/m. This research result shows that the genetic mechanism of abnormal low pressure attributes to reduction of paleothermal gradients, uplift and erosion during Eocene period. Moreover, gas diffusions also affect the formation of underpressure system at local part. This system at present indicates the evolution process from overpressure to underpressure, which controls fluid flow and hydrocarbon migration in different stages of the depression. Hence, oil pools generating at early stage occur at the basin margin, and gas pools generating at late stage at central part of the Shiwu depression, Songliao basin.
-
Key words:
- underpressure system /
- Shiwu depression /
- Songliao basin
-
图 6 十屋断陷A-A′剖面剩余压力随时间变化
a, b为异常超压; c为异常低压.剖面位置见图 1
Fig. 6. Evolutionary processes of excess pressure in the Shiwu depression
表 1 模拟中采用孔隙度和渗透率参数
Table 1. Parameters of porosity and permeability in the model
-
[1] Darby D, Haszeldine R S, Couples G D. Pressure cells and pressure seals in the UK central graben[J]. Marine and Petroleum Geology, 1996, 13(8): 865-878. doi: 10.1016/S0264-8172(96)00023-2 [2] Swarbrick R E, Osborne M J, Grunberger D, et al. Integrated study of the Judy Field (Block 30/7a)— anoverpressured Central North Sea oil/gas field[J]. Marine and Petroleum Geology, 2000, 17(9): 993-1010. doi: 10.1016/S0264-8172(00)00050-7 [3] Belitz K, Bredehoeft J D. Hydrodynamics of Denver basin: explanation of subnormal fluid pressure[J]. AAPG Bulletin, 1988, 72: 1334-1359. [4] Lee M K, Bethke C M. Groundwater flow, late cementation, and petroleum accumulation in the Permian Lyons sandstone, Denver basin[J]. AAPG Bulletin, 1994, 78(2): 217-237. [5] Xie X N, Li S T, Dong W L, et al. Overpressure development and hydrofracturing in the Yinggehai basin, South China Sea[J]. Journal of Petroleum Geology, 1999, 22(4): 437-454. doi: 10.1111/j.1747-5457.1999.tb00478.x [6] Bredehoeft J D, Wesley J B, Fouch T D. Simulations of the origin of fluid pressure, fracture generation, and the movement of fluids in the Uinta basin, Utah[J]. AAPG Bulletin, 1994, 78(11): 1729-1747. [7] Bethke C M, Reed J D, Oltz D F. Long-range petroleum migration in the Illinois basin[J]. AAPG Bulletin, 1991, 75(5): 925-945. [8] Gvirtzman H, Stanislavsky E. Palaeohydrology of hydrocarbon maturation, migration and accumulation in the Dead Sea rift[J]. Basin Research, 2000, 12(1): 79-93. doi: 10.1046/j.1365-2117.2000.00111.x [9] 何生, 陶一川, 姜鹏. 利用多种古地温计研究松辽盆地东南隆起区的地热史[J]. 地球科学——中国地质大学学报, 1995, 20(3): 328-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX503.013.htmHE S, TAO Y C, JIANG P. Study on geothermal history in swell area of southeast Songliao basin by using several paleogeothermometers[J]. Earth Science— Journal of China University of Geosciences, 1995, 20(3): 328-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX503.013.htm [10] He S, Middleton M, Tang Z H. Characteristics and origin of underpressure system in the Shiwu fault depression, southeast Songliao basin, China[J]. Basin Research, 2000, 12(2): 147-158. doi: 10.1046/j.1365-2117.2000.00118.x [11] 陈孔全, 吴金才, 唐黎明. 松辽盆地南部断陷成藏体系[M]. 武汉: 中国地质大学出版社, 1999. 134.CHEN K Q, WU J C, TANG L M. Petroleum system in the fault depression of south Songliao basin[M]. Wuhan: China University of Geosciences Press, 1999. 134. [12] Bachu S, Underschultz J R. Large-scale underpressuring in the Mississippian-Cretaceous succession, southwestern Alberta basin[J]. AAPG Bulletin, 1995, 79: 989-1004. [13] Jiao J J, Zheng C. Abnormal fluid pressures caused by erosion and subsidence of sedimentary basins[J]. Journal of Hydrology, 1998, 204: 124-137. doi: 10.1016/S0022-1694(97)00115-7 [14] Barker C. Aquathermal pressuring— role of temperature in development of abnormal-pressure zones[J]. AAPG Bulletin, 1972, 56: 2068-2071. [15] Toth J, Millar R F. Possible effects of erosional changes of topographic relief on pore pressures at depth[J]. Water Resources Research, 1983, 19: 1585-1597. doi: 10.1029/WR019i006p01585 [16] Law B E, Dickinson W W. Conceptual-model for origin of abnormally pressured gas accumulation in low-permeability reservoirs[J]. AAPG Bulletin, 1985, 69(8): 1295-1304. [17] Neuzil C E, Pollock D W. Erosional unloading and fluid pressures in hydraulically" tight" rocks[J]. Journal of Geology, 1983, 91: 179-193. doi: 10.1086/628755 [18] Swarbrick R E, Osborne M J. Mechanisms that generate abnormal pressures: an overview[A]. In: Law B E, Ulmishek G F, Slavin V I, eds. Abnormal pressures in hydrocarbon environments[C]. AAPG Memoir, 1998. 70: 13-34. [19] Pang X, Lerche I. Constraints on hydrocarbon migration from the Qingshakou source rock in the west of the north Songliao basin, China[J]. Petroleum Geoscience, 1997, 3: 73-94. doi: 10.1144/petgeo.3.1.73 [20] Bradley J S. Abnormal formation pressure[J]. AAPG Bulletin, 1975, 59: 957-973. [21] Domenico P A, Palciauskas V V. Thermal expansion of fluids and fracture initiation in compacting sediments[J]. AAPG Bulletin, 1979, 90: 953-979. [22] Bethke C M, Lee M K, Park J. Basin modeling with Basin2: a guide to using the Basin2 software package[M]. University of Illinois, USA: Urbana-Champaign, 2000.205.