Mantle Replacement: Evidence from Comparison in Trace Elements between Peridotite and Diopside from Refractory and Fertile Mantle, North China
-
摘要: 在华北地块东部, 河南鹤壁新生代玄武岩中的耐熔橄榄岩捕虏体被认为是克拉通地幔的残留; 山东山旺饱满橄榄岩捕虏体被认为是新生代玄武岩所捕获的新生地幔物质, 对它们全岩的常量、微量元素, 组成单矿物的常量元素和透辉石微量元素进行了对比.结果显示代表古老岩石圈的鹤壁克拉通型地幔和代表新生岩石圈的山旺“大洋型”地幔分别相当于原始地幔经历15 %~ 2 5 %和1%~ 5 %熔融的产物.它们在熔融之后又都遭受了硅酸盐质碳酸岩熔体的交代改造作用, 但前者明显强于后者.古老岩石圈橄榄岩的固相线温度受地幔熔/流体的长期交代而降低.由于早中生代时华北地块受扬子地块碰撞的地幔热扰动和软流圈上涌影响, 促使橄榄岩熔融.所融出的基性岩浆主要垫托在地壳底部, 形成壳-幔过渡带并实现大规模的壳-幔物质和热交换.第三纪以后的热沉降使抬升的软流圈物质冷却垫托在岩石圈底部构成新增生的岩石圈.因此, 发生于东部的中、新生代(相对于古生代) 岩石圈减薄不是软流圈抬升所引起的简单岩石圈厚度变小, 而是伴随着新生地幔物质对古老地幔的置换过程.Abstract: In the eastern part of the North China block, the refractory peridotite xenoliths in Cenozoic Hebi basalts (Henan Province) are regarded as the shallow relics of the cratonic mantle; while the fertile peridotite xenoliths in Cenozoic Shanwang basalts (Shandong Province) are regarded as the newly accreted mantle. In this paper, a comparison is made between the major and trace elements of the whole rocks and the major elements of the component minerals and the trace elements of the diopsides. The results show that Hebi "cratonic" peridotites and Shanwang "oceanic" ones, respectively, represent the products of 15%-25% and 1%-5% of fractional melting for the primary mantle. These products were metasomated by the silicate carbonatite melt. The mantle metasomatism in the former is stronger than that in the latter. The solidus temperature of the cratonic lithospheric peridotite fell due to the long-term metasomatism of the mantle molten/fluid bodies. The melt underplated at the basement of the lower crust, created the crust-mantle transition zone and resulting in the huge heat and material exchange. The ensuing decreased temperature after Eogene period resulted in the uplifted asthenospheric cooling and underplating at the lithospheric basement for the newly accreted lithosphere. Therefore, the Mesozoic-Cenozoic (relative to Paleozoic) lithospheric thinning did not initiate the simple decrease in lithospheric thickness arising from the asthenospheric upwelling. Instead, this thinning created the replacement process of the accompanying cratonic mantle by the newly accreted one.
-
Key words:
- trace element /
- refractory peridotite /
- fertile peridotite /
- mantle replacement /
- North China block
-
表 1 鹤壁古老地幔与山旺新生地幔橄榄岩及其矿物的主元素成分对比
Table 1. Major element component comparison of peridotites and minerals between Hebi refractory and Shanwang fertile mantle
表 2 鹤壁古老地幔与山旺新生地幔橄榄岩及其单斜辉石微量元素对比
Table 2. Trace element component comparison of peridotites and clinopyroxenes between Hebi refractory and Shanwang fertile mantle 10-6
-
[1] Menzies M A, Fan W M, Zhang M. Paleozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China[J]. Geol Soc Spec Pub, 1993, 76: 71-81. doi: 10.1144/GSL.SP.1993.076.01.04 [2] 徐义刚. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J]. 矿物岩石地球化学通报, 1999, 18(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH901.000.htmXU YG. Roles of thermal-mechanic and chemical erosionin continental lithospheric thinning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1999, 18(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH901.000.htm [3] 郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄[M]. 武汉: 中国地质大学出版社, 1999. 126.ZHENG J P. Mesozoic-Cenozoic mantle replacement and lithospheric thinning beneath the eastern China[M]. Wuhan: China University of Geosciences Press, 1999. 126. [4] 路凤香, 郑建平. 华北地台古生代岩石圈地幔特征及深部过程[A]. 见: 池际尚, 路凤香. 华北地台金伯利岩及古生代岩石圈地幔特征[C]. 北京: 科学出版社, 1996.LU F X, ZHENG J P. Palaeozoic nature and deep processes of lithospheric mantle beneath North China[A]. In: CHI J S, LU F X, eds. Kimberlites and Palaeozoic mantle beneath North China platform[C]. Beijing: Science Press, 1996. [5] Zheng J P, O'Reilly S Y, Griffin W L, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, North China block[J]. International Geology Review, 1998, 40(6): 471-499. doi: 10.1080/00206819809465220 [6] Xu X S, O'Reilly S Y, Griffin W L, et al. Genesis of young lithospheric mantle in SE China: a Lam-ICPMS study[J]. J Petrol, 1999, 40: 111-148. [7] Zheng J P, O'Reilly S Y, Griffin W L, et al. Relics of the Archean mantle beneath eastern part of the North China block and its significance in lithospheric evolution[J]. Lithos, 1999, (57): 43-66. [8] 袁学诚. 岩石圈地球物理构造格架图[M]. 北京: 地质出版社, 1996.YUAN X C. Maps of geophysical from China[M]. Beijing: Geological Publishing House, 1996. [9] Wang J Y, Chen M X, Wang J A, et al. On the evolution of geothermal regime of North China basin[J]. Journal of Geodynamics, 1985, (4): 133-148. [10] Xu J W, Zhu G. Tectonic models of the Tanlu fault zone, eastern China[J]. International Geology Review, 1994, 36: 771-784. doi: 10.1080/00206819409465487 [11] Deer W A, Howie RA, Zussman J. Rock-forming minerals[M]. London: Geological Society, 1997. [12] McDonough W F, Sun S S. The composition of the Earth [J]. Chem Geol, 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4 [13] Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: an ion microprobe study of diopside in abyssal peridotites[J]. J Geophys Res, 1990, 95: 2661-2678. doi: 10.1029/JB095iB03p02661 [14] Norman M D. Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia[J]. Contrib Mineral Petrol, 1998, 130: 240-255. doi: 10.1007/s004100050363 [15] Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere [J]. J Petrol, 1998, 39: 1917-1930. doi: 10.1093/petroj/39.11-12.1917 [16] Stalder R, Foley S F, Brey G P, et al. Mineral-aqueous fluid partitioning of trace elements at 900-1 200 ℃ and 3.0-5.7 GPa: new experimental implications for mantle metasomatism[J]. Geochim Cosmochim Acta, 1998, 62: 1781-1801. doi: 10.1016/S0016-7037(98)00101-X [17] Zangana N A, Downes H, Thirlwall M F, et al. Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic(French Massif Central): implications for the composition of the shallow lithospheric mantle[J]. Chem Geol, 1999, 153: 1135. [18] Blusztajn J, Shimizu N. Trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland[J]. Chemical Geology, 1994, 111: 227-243. doi: 10.1016/0009-2541(94)90091-4 [19] Meen J K. Mantle metasomatism and carbonates: an experimental study of a complex relationship[J]. Geol Soc Am(Spec Pap), 1987, 215: 91-100. [20] Eggler D H. Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints[A]. In: Menzies M A, Hawkesworth C J, eds. Mantle metasomatism[C]. London: London Academic Press, 1992. 21-41. [21] Watson E B, Brenan J M. Fluids in lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and the implications for fluid transport, host-rock physical properties and fluid inclusion information[J]. Earth Planet Sci Lett, 1987, 85: 497-515. doi: 10.1016/0012-821X(87)90144-0 [22] Zinngrebe E, Foley S F. Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment[J]. Contrib Mineral Petrol, 1995, 122: 79-96. doi: 10.1007/s004100050114 [23] Li S G, Xiao Y, Liou D, et al. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: timing and processes[J]. Chemical Geology, 1993, 109: 89-111. doi: 10.1016/0009-2541(93)90063-O