Geochemistry Constrains on Rock Association of UHP Terrane during Exhumation
-
摘要: 大别—苏鲁超高压地体现今的岩石组合是超高压变质岩石经历快速折返过程中各种地质作用叠加改造的最终产物, 其中拆沉、底侵、构造体制转换是改造的动力; 退变质作用、构造置换、深熔作用是改造的主要方式.超高压地体的主要岩石组合有榴辉岩、大理岩、硬玉石英岩、斜长角闪岩、片麻岩和面理化花岗岩.地质、常量、微量、同位素地球化学研究表明, 斜长角闪岩是榴辉岩退变的产物, 片麻岩、面理化花岗岩是榴辉岩退变的斜长角闪岩递进深熔的产物, 即退变榴辉岩折返到中下地壳, 初次熔融产生相当于片麻岩成分的半原地英云闪长质-花岗闪长质-花岗质岩浆, 片麻岩再次熔融产生成分相当于面理化花岗岩的A型花岗岩岩浆.Abstract: The present rock association of the UHP terrane in Dabie-Sulu region, China results from the result of source UHP rocks rebuilt by retrogressive metamorphism, tectonics, anatexis during the exhumation. The dynamics of reformation is the conversion of tectonics, basal erosion and delimitation by means of metamorphism, structure-replacement and anatexis. The UHP terrane is composed of ecologite, marble, jadeite-quartzite, amphibolites, gneisses and foliated granites. In terms of geology and geochemistry, the amphibolite is found to have evolved from ecologite by retrogressive metamorphism and gneisses, foliated granite to have evolved from the amphibolite by anatexis. The anatexis started at 230 Ma when the UHP terrane exhumed to the low crust and turned intense in the middle-low crust. The melting composition from the anatexis of amphibolite is equal to tantalite or granodiorite (in agreement with gneisses). Moreover, the melt from the partial-melting of gneisses with A-type granite composition (which is the same with the foliated granite). The gneisses and foliated granites have both evolved from ecologite by retrogressive metamorphism and delivery anatexis.
-
Key words:
- exhumation /
- delivery anatexis /
- rock association /
- evolution /
- Dabie-Sulu
-
表 1 大别—苏鲁超高压地体各岩石单元稀土参数
Table 1. REE parameters of UHP rocks in Dabie-Sulu
表 2 大别—苏鲁超高压地体全岩Sm-Nd同位素比值
Table 2. Whole-rock Sm-Nd isotopic ratios of UHP rocks from Dabie-Sulu
-
[1] 索书田, 钟增球, 游振东, 等. 大别—苏鲁区残余构造及其动力学意义[J]. 地球科学———中国地质大学学报, 2000, 25(6): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200006001.htmSUO S T, ZHONG Z Q, YOU Z D, et al. Residual tectonics and its dynamic implication in Dabie-Sulu[J]. Earth Science— Journal of China University of Geosciences, 2000, 25(6): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200006001.htm [2] 钟增球, 索书田, 张宏飞, 等. 桐柏—大别碰撞造山带的基本组成与结构[J]. 地球科学———中国地质大学学报, 2001, 26(6): 560-567. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200106001.htmZHONG Z Q, SUO S T, ZHANG HF, et al. Major constituents and texture of the Tongbai-Dabie collisionic orogenic belt[J]. Earth Science— Journal of China University of Geosciences, 2001, 26(6): 560-567. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200106001.htm [3] 刘福来, 许志琴, 杨经绥, 等. 苏鲁地体超高压和非超高压花岗质片麻岩的判别标志[J]. 地质论评, 2001, 47: 164-168. doi: 10.3321/j.issn:0371-5736.2001.02.008LIU F L, XU Z Q, YANG J S, et al. Distinguishable signature of UHP and non-UHP granitic gneissesin the Sulu terrane: evidence from mineral inclusions in zircons[J]. Geological Review, 2001, 47: 164-168. doi: 10.3321/j.issn:0371-5736.2001.02.008 [4] 孙海婷, 王汝成, 徐进士, 等. 大别山东段超高压变质中变质花岗岩的矿物化学和地球化学特征[J]. 高校地质学报, 2002, 8: 25-39. doi: 10.3969/j.issn.1006-7493.2002.01.004SUN H T, WANG R C, XU J S, et al. Mineral chemistry and geochemical characteristics of metagranitoids from the UHP metamorphic belt, East Dabie Mountains and their geological significance[J]. Geological Journal of China Universities, 2002, 8: 25-39. doi: 10.3969/j.issn.1006-7493.2002.01.004 [5] 刘晓春, 董树文, 钱存超, 等. 大别山碧溪岭未经历超高压变质的片麻状花岗岩[J]. 矿物岩石地球化学通报, 2001, 20: 21-25. doi: 10.3969/j.issn.1007-2802.2001.01.005LIU X C, DONG S W, QIAN C C, et al. Gneissic granite did not experience UHP metamorphism from Bixiling, the Dabie Mountains[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20: 21-25. doi: 10.3969/j.issn.1007-2802.2001.01.005 [6] 钟增球, 张宏飞, 索书田, 等. 大别超高压变质带折返过程中的部分熔融作用[J]. 地球科学———中国地质大学学报, 1999, 24(4): 393-398.ZHONG Z Q, ZHANG H F, SUO S T, et al. Partial melting in exhumation of ultrahigh pressure metamorphic rocks, Dabie Mountains, China[J]. Earth Science— Journal of China University of Geosciences, 1999, 24(4): 393-398. [7] 刘福来, 许志琴, 杨经绥, 等. 中国苏北先导孔CCSD-PP2片麻岩中锆石的矿物包裹体及其超高压变质作用的证据[J]. 科学通报, 2001, 46: 241-245. doi: 10.3321/j.issn:0023-074X.2001.03.014LIU F L, XU Z Q, YANG J S, et al. UHP metamorphism of gneisses from the pre-pilot drillhole CCSD-PP2 in the north of Jiangsu Province, China: evidence from mineral inclusion in zircons[J]. Chinese Science Bulletin, 2001, 46: 241-245. doi: 10.3321/j.issn:0023-074X.2001.03.014 [8] 杨经绥, 许志琴, 裴先志, 等. 秦岭发现金刚石: 横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别[J]. 地质学报, 2002, 76: 484-495. doi: 10.3321/j.issn:0001-5717.2002.04.007YANG J S, XU Z Q, PEI X Z, et al. Discovery of diamond in North Qinling: evidence for a giant UHPM belt across central China and recognition of Paleozoic and Yangtze plates[J]. Acta Geologica Sinica, 2002, 76: 484-495. doi: 10.3321/j.issn:0001-5717.2002.04.007 [9] 索书田, 钟增球, 张宏飞, 等. 桐柏山高压变质带及其区域构造型式[J]. 地球科学———中国地质大学学报, 2001, 26(6): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200106000.htmSUO S T, ZHONG Z Q, ZHANG HF, et al. High-pressure metamorphic belt and its tectonic pattern in Tongbai Mountains, central China[J]. Earth Science— Journal of China University of Geosciences, 2001, 26(6): 551558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200106000.htm [10] 张宏飞, 钟增球, 高山, 等. 大别山西部面理化面理化含榴花岗岩锆石U-Pb年龄[J]. 科学通报, 2001, 46: 843-846. doi: 10.3321/j.issn:0023-074X.2001.10.013ZHANG H F, ZHONG Z Q, GAO S, et al. The U-Pb age of foliated garnet-bearing granites from west of Dabie Mountains[J]. Chinese Science Bulletin, 2001, 46: 843-846. doi: 10.3321/j.issn:0023-074X.2001.10.013 [11] 游振东, 韩郁菁, 杨巍然, 等. 东秦岭大别高压超高压变质带[M]. 武汉: 中国地质大学出版社, 1998.YOU Z D, HAN Y J, YANG W R, et al. High-and ultrahigh pressure metamorphic belt in Dabie, East Qinling [M]. Wuhan: China University of Geosciences Press, 1998. [12] Lwamori H. Compression melting in subduction zones [J]. Terra Nova, 1993, 9: 9-13. [13] Gardien V, Thomson A B, Ulmer P. Melting of biotite + plagioclase+ quartz gneisses[J]. Journal of Petrology, 2000, 41: 651-666. doi: 10.1093/petrology/41.5.651 [14] Gardien V, Thomson A B, Grujic D, et al. Melting of biotite+ plagioclase+ quartz±mucovite assemblage implication for crustal melting gneisses[J]. Journal of Geophysical Research, 1995, 100: 15581-15591. doi: 10.1029/95JB00916 [15] Johnston A D, Wylie P J. Constrains on the origin of Achaean trondhjemites based on phase relationships of NUK gneiss with H2O at 15 kbar[J]. Contributions to Mineralogy and Petrology, 1988, 100: 35-46. doi: 10.1007/BF00399438 [16] Douce E P, Beard A J. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 32: 706-736.