Digital Simulation of Structural Stress Field and Flow Field in DF1-1 Diapir
-
摘要: DF1-1底辟区是莺歌海盆地内超压流体最活跃的地带之一.超压流体的活动直接受控于构造应力及其形成的不同类型的断裂和裂隙构成的输导系统.从底辟区大规模流体垂向活动以及幕式活动的特征来看, 流体流动的动力主要是由于垂向压差的存在以及渗流场变化引起的局部应力场(包括热应力场) 的作用所致.在详细研究底辟区的构造及流体活动关系的基础上, 对底辟区构造应力场及渗流场的演化进行了模拟.结果显示: 构造运动引起的应力场决定了DF1-1底辟区油气沿主要断裂系走向迁移的总趋势, 在底辟区流体从底辟的两侧向其中心运移, 由底辟体中向上运移为主; 高压流体产生的热应力控制局部应力场状况及油气运移方向, 驱动流体向底辟体顶部运移, 当热应力值过大时有可能改变应力场状况以及油气运移总趋势.Abstract: DF1-1 diapir is one of the most active areas with the overpressure fluid in Yinggehai basin. The overpressure fluids were controlled by the structural stress and migration system made up of different types of fractures and faults. In terms of the large-scale vertical and episodic fluid flows in the diaper area, the dynamics of the fluid flows is mainly attributed both to the vertical pressure difference and to the local stress fields (including thermal stress field) caused by the changes in infiltration flow field from fluid flow. The relationship between structure and fluid flow in the diaper area thus obtained in this paper is employed to simulate, together with the finite element digital method, the evolutions of both the structural stress fields and the infiltration fluid filed that are in line with the process of diapirism. The results show that the stress fields and fluid migration fields before diapirism are different from those after it. As a whole, stress fields from the tectonic stress determined the fluid migrating pattern along the fault zone in the DF1-1 diapir, that is, the fluids migrating from both sides of the diapir to its center and migrating upward from the diapir. Thermal stresses caused by the high-pressure fluid flow also controlled the local stress pattern and petroleum and gas fluid flow direction, which drove the matured hydrocarbon fluid migration upward from depression to highland. Too great a thermal stress value might have changed the stress pattern and the general trend of the petroleum and gas migration.
-
Key words:
- DF1-1 diapir /
- structural stress field /
- migration field /
- digital simulation
-
表 1 DF1-1底辟数值模拟岩石力学及热力学参数表
Table 1. Mechanical and thermodynamical parameters of petrology in DF1-1 diapir
-
[1] 王连捷, 张利蓉, 袁嘉音, 等. 地应力与油气运移[J]. 地质力学学报, 1996, 2(2): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX602.001.htmWANG L J, ZHANG L R, YUAN J Y, et al. Crustal stress and oil and gas migration[J]. Journal of Geomechanics, 1996, 2(2): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX602.001.htm [2] 殷秀兰, 李思田, 杨计海, 等. 莺歌海盆地DF1-1底辟的断裂系统及其对天然气成藏的控制[J]. 地球科学——中国地质大学学报, 2002, 27(4): 391-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200204007.htmYIN X L, LI S T, YANG J H, et al. Fault system and its controlling to gas accumulation in DF1-1 diapir, Yinggehai basin[J]. Earth Science— Journal of China University of Geosciences, 2002, 27(4): 391-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200204007.htm [3] 郝芳, 李思田, 龚再升, 等. 莺歌海盆地底辟发育机理与流体幕式充注[J]. 中国科学(D辑), 2001, 31(6): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200106004.htmHAO F, LI S T, GONG Z S, et al. The mechanism of diapirs developing and episodic expulsing in Yinggehai basin[J]. Science in China(Series D), 2001, 31(6): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200106004.htm [4] 黄保家, 肖贤明, 董伟良. 莺歌海盆地烃源岩特征及天然气生成演化模式[J]. 天然气工业, 2002, 22(1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200201006.htmHUANG B J, XIAO X M, DONG W L. Source rocks and generation & evolution model of natural gas in Yinggehai basin[J]. Natural Gas Industry, 2002, 22 (1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200201006.htm [5] 董伟良, 黄保家. 东方1-1气田天然气组成的不均一性与幕式充注[J]. 石油勘探与开发, 1999, 26(15): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK902.004.htmDONG W L, HUANG B J. Heterogeneity of natural gases and the episodic charging process: a case study for Dongfang 1-1 gas field, Yinggehai basin[J]. Petroleum Exploration and Development, 1999, 26(15): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK902.004.htm [6] Waples D W, Suizu M, Kamata H. The art of maturity modeling. Part 2: alternative model and sensitivity analysis[J]. AAPG Bulletin, 1992, 76: 47-66. [7] Wood D A. Relationship between thermal maturity indices calculated using Arrhenius equation and Lopatin method: implications for petroleum exploration[J]. AAPG Bulletin, 1988, 72: 115-134. [8] 武红岭, 王小凤, 马寅生, 等. 油田构造应力场驱动油气运移的理论和方法研究[J]. 石油学报, 1999, 20(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199905002.htmWU H L, WANG X F, MA Y S, et al. Research on the theory and method about stress field driving the oil and gas migration[J]. Acta Petrolei Sinica, 1999, 20(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199905002.htm [9] Jaeger J C, Cook N G W, Fundamentals of rook mechanics[M]. 3rd Edition. London: Chapman and Hall, 1979. [10] 殷有泉. 有限单元方法及其在地学中的应用[M]. 北京: 地震出版社, 1987.YIN Y Q, The finite element method and its application in geology[M]. Beijing: Seismological Press, 1987. [11] 吴望一. 流体力学讲义(上册)[M]. 北京大学出版社, 1980.WU W Y. Fluid mechanics[M]. First Edition. Beijing: Peking University Press, 1980. [12] 朱以文, 韦庆如, 顾伯达. 微机有限元前后处理系统Vizi CAD及其应用[M]. 北京: 科学技术文献出版社, 1993.ZHU Y W, WEI Q R, GU B D. Vizi CAD and its application of post and pre-process system of the finite element by computer[M]. Beijing: Science and Technology Publishing House, 1993. [13] 万天丰. 古构造应力场[M]. 北京: 地质出版社, 1988.WAN T F. Paleotectonic stress field[M]. Beijing: Geological Publishing House, 1988. [14] 陈庆宣, 王维襄, 孙叶, 等. 岩石力学与构造应力场分析——地质力学的方法与实践[M]. 北京: 地质出版社, 1998.CHEN Q X, WANG W X, SUN Y, et al. Analysis on the lithomechanics and structural stress field—the method and practice of geomechanics[M]. Beijing: Geological Publishing House, 1998.