Uplifting since Quaternary in Southeastern Qilian Mountains and Its Dynamic Analysis
-
摘要: 祁连山东南缘隆升是来自印度板块挤压的远程效应与该区周边地块的存在及其活动的相互制约作用而产生的挤压隆升、伸展隆升和左旋走滑隆升共同作用的结果.标志性构造及主应力分析表明, 自早更新世以来, 隆升动力机制不断发生转换, 在早更新世早期以北东-南西向挤压为主, 中更新世早期至全新世早期以北东-南西向拉张、近东-西向的拉张为主, 全新世晚期以北西-南东向左旋扭动为主.根据湟水河阶地有关数据估算出的不同时段河谷下切速率为: 1.4 1× 103 ~ 36.4ka间平均速率较慢(0.11mm/a), 36.4ka至今较快(1.5 4mm/a), 其中10.5~ 3ka间最快(2.2 7~ 2.80mm/a), 显示该区自1.4 1Ma至今构造隆升具有越来越强烈的变化趋势.Abstract: Quaternary structures and those multipleage stress changes reveal that the uplifting in southeastern Qilian Mountains results from the long-distance effect of the Indian plate compression and multiplex uplift mechanism on the adjacent massifs, producing the compression-uplifting, extension-uplifting and sinistral strike-slip uplifting in the area. The analysis of the stress and marker structures indicates that the uplift dynamic mechanism changes have occurred since Early Pleistocene epoch. The early Early Pleistocene is mainly NE-SW direction compression, the Middle Pleistocene to Early Holocene, mainly NE-SW and approaching E-W direction extension, while the Late Holocene is mainly NW-SE sinistral strike-slip. The stream valley downcutting rate since 1.41 Ma is estimated according to relative date of terrace from Huangshui River. The average rate from 1.41 Ma to 36.4 ka is slower, 0.11 mm/a, from 36.4 ka to the present, it is 1.54 mm/a and from 10.5 ka to 3 ka is 2.27-2.80 mm/a, the most rapid. It is shown that the tectonic uplifting in the area tends to be more and more intense since 1.41 Ma.
-
Key words:
- southeastern Qilian Mountains /
- Quaternary /
- stream downcutting rate /
- uplift mechanism
-
图 2 祁连山东南缘民河地区主要断裂及第四系地质简图(左上角为研究区位置及主要水系分布)
1.全新统冲积物; 2.全新统冲洪积物; 3.上更新统洪积物; 4.上更新统冲积物; 5.上更新统风积物; 6.上更新统冲洪物; 7.中更新统洪积物; 8.中更新统冲积物; 9.新近系—古近系红层; 10.前新生代基底; 11.构造单元主断裂; 12.逆断层13.正断层; 14.平移断层; 15.隐伏断层; 16.角度不整合界线; 17.主要水系及其流向
Fig. 2. Simple geological map of major faults and Quaternary strata in Minhe area, southeastern Qilian Mountains
表 1 红古城地区湟水河阶地特征及下切速率
Table 1. Terrace characteristics and trenching rates in Huangshui River
-
[1] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, (189): 419- 462. https://www.jstor.org/stable/1740465 [2] 钟大赉, 丁林. 青藏高原的隆升过程及其机制探讨[J]. 中国科学(D辑), 1996, 26(4): 289- 295. doi: 10.3321/j.issn:1006-9267.1996.04.001ZHONG D L, DING L. Rising process of the QinghaiXizang(Tibet)plateau and its mechanism[J]. Science in China(Series D), 1996, 26(4): 289- 295. doi: 10.3321/j.issn:1006-9267.1996.04.001 [3] Owens T J, Zandt G. Implications of crustal property variations for model of Tibetan plateau evolution[J]. Nature, 1997, 387(1): 37- 43. [4] 许志琴, 杨经绥, 姜枚, 等. 大陆俯冲作用及青藏高原周缘造山带的崛起[J]. 地学前缘, 1999, 6(3): 139- 150. doi: 10.3321/j.issn:1005-2321.1999.03.014XU Z Q, YANG J S, JIANG M, et al. Continental subduction and uplifting of the orogenic belts at the margin of the Qinghai-Tibet plateau[J]. Earth Science Frontiers, 1999, 6(3): 139- 150. doi: 10.3321/j.issn:1005-2321.1999.03.014 [5] Platt J P, England P C. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences[J]. American Journal of Science, 1994, 294(3): 307- 336. doi: 10.2475/ajs.294.3.307 [6] 李吉均, 方小敏, 马德州, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑), 1996, 26(4): 316- 322. doi: 10.3321/j.issn:1006-9267.1996.04.005LI J J, FANG X M, MA D Z, et al. Geomorphological and environmental evolution in the upper reach of the Yellow River during the Late Cenozoic uplift of QinghaiXizang plateau[J]. Science in China(Series D), 1996, 26(4): 316- 322. doi: 10.3321/j.issn:1006-9267.1996.04.005 [7] 李长安, 殷鸿福, 于庆文. 东昆仑山构造隆升与水系演化及其发展趋势[J]. 科学通报, 1999, 44(2): 211- 213. doi: 10.3321/j.issn:0023-074X.1999.02.023LI C A, YIN H F, YU Q W. Evolution of drainage systems and its developing trend in connection with tectonic uplift of eastern Kulun Mt[J]. Chinese Science Bulletin, 1999, 44(2): 211- 213. doi: 10.3321/j.issn:0023-074X.1999.02.023 [8] Tapponnier P, Peltzer G, Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10: 611- 616. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/10/12/611/203380/Propagating-extrusion-tectonics-in-Asia-New [9] 马宗晋, 陈鑫连, 叶叔华, 等. 中国大陆现今地壳运动的GPS研究[J]. 科学通报, 2001, 46(13): 1118- 1120. doi: 10.3321/j.issn:0023-074X.2001.13.015MA Z J, CHEN X L, YE S H, et al. Contemporary crustal movement of continental China obtained by global positioning system(GPS)measurements[J]. Chinese Science Bulletin, 2001, 46(13): 1118- 1120. doi: 10.3321/j.issn:0023-074X.2001.13.015 [10] 王琪, 张培震, 马宗晋. 中国大陆现今构造变形GPS观测数据与速度场[J]. 地学前缘, 2002, 9(2): 415- 429. doi: 10.3321/j.issn:1005-2321.2002.02.021WANG Q, ZHANG P Z, MA Z J. GPS database and velocity field of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers, 2002, 9(2): 415- 429. doi: 10.3321/j.issn:1005-2321.2002.02.021 [11] 张培震, 王琪, 马宗晋. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘, 2002, 9(2): 430- 441. doi: 10.3321/j.issn:1005-2321.2002.02.022ZHANG P Z, WANG Q, MA Z J. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers, 2002, 9(2): 430- 441. doi: 10.3321/j.issn:1005-2321.2002.02.022 [12] 王国灿, 侯光久, 张克信, 等. 东昆仑东段中更新世以来的成山作用及其动力转换[J]. 地球科学——中国地质大学学报, 2002, 27(1): 4- 12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201001.htmWANG G C, HOU G J, ZHANG K X, et al. Mountain building and its dynamic transition since Middle Pleistocene in east of eastern Kunlun, Northeast Tibet plateau [J]. Earth Science— Journal of China University of Geosciences, 2002, 27(1): 4- 12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201001.htm [13] 李佐唐, 何少林, 许健业, 等. 祁连山地震带两次中强地震前的加卸载响应比异常[J]. 地震研究, 2001, 24(3): 197- 201. doi: 10.3969/j.issn.1000-0666.2001.03.002LI Z T, HE S L, XU J Y, et al. Anomaly of the load unload response ratio before the two medium-strong earthquakes in Mt. Qilian seismic zone[J]. Journal of Seismological Research, 2001, 24(3): 197- 201. doi: 10.3969/j.issn.1000-0666.2001.03.002 [14] 张希, 江在森, 王双绪, 等. 我国西部近期应变强度比动态演化特征[J]. 地震研究, 2001, 24(2): 115- 120. doi: 10.3969/j.issn.1000-0666.2001.02.004ZHANG X, JIANG Z S, WANG S X, et al. Dynamic evolution characteristics of strain strength ratio in the west of China[J]. Seismological Research, 2001, 24(2): 115 - 120. doi: 10.3969/j.issn.1000-0666.2001.02.004 [15] 彭建兵, 毛彦龙, 范文, 等. 区域稳定动力学研究——黄河黑山峡大型水电工程例析[M]. 北京: 科学出版社, 2001. 127- 136.PENG J B, MAO Y L, FAN W, et al. Regional stability research of dynamics— on Heishanxia large-scale hydropower station, the Yellow River[M]. Beijing: Science Press, 2001. 127- 136. [16] 王菲, 李江春, 朱日祥. 晚第四纪中秦岭下切速率与构造抬升[J]. 科学通报, 2002, 47(13): 1032- 1036. doi: 10.3321/j.issn:0023-074X.2002.13.017WANG F, LI J C, ZHU R X. Downcutting and uplifting in the middle part of Qinling orogenic belt during the Late Quaternary[J]. Chinese Science Bulletin, 2002, 47 (13): 1032- 1036. doi: 10.3321/j.issn:0023-074X.2002.13.017 [17] 尹功明, 卢演俦, 赵华, 等. 华山新生代构造抬升[J]. 科学通报, 2001, 46(13): 1121- 1123. doi: 10.3321/j.issn:0023-074X.2001.13.016YIN G M, LU Y C, ZHAO H, et al. Tectonic uplift of the Huashan in the Cenozoic[J]. Chinese Science Bulletin, 2001, 46(13): 1121- 1123. doi: 10.3321/j.issn:0023-074X.2001.13.016 [18] 顾延生, 李长安, 谢远云, 等. 兰州-民和盆地第四纪地层学研究[J]. 中国区域地质, 2001, 20(4): 384- 391. doi: 10.3969/j.issn.1671-2552.2001.04.009GU Y S, LI C A, XIE Y Y, et al. Quaternary stratigraphy and palaeoenvironment of the Lanzhou-Minhe basin [J]. Regional Geology of China, 2001, 20(4): 384- 391. doi: 10.3969/j.issn.1671-2552.2001.04.009