A Modified Algorithm of FCM for Simulating Biological and Chemical Transport Process
-
摘要: 给出了有限颗粒法(FCM) 的一个修正算法, 用来模拟二维多孔介质中复杂的物理、生物化学输运现象.该算法不仅具有与早先的FCM一样的优点, 而且可以在更微观的水平上保证质量守恒, 获得更为准确的颗粒位置, 从而有利于质量交换的高精度计算.计算结果与精确解和早先的FCM的结果做了比较.Abstract: A modified algorithm of finite cell method (FCM) is presented for simulating complex physical, biological and chemical transport in porous media. It not only has the same advantages as the original finite cell method, but also can keep local mass conservation in more finer meshes, so we may get the locations of cells as well as the final results with high accuracy. Two numerical examples show the comparison between the solutions of modified FCM and original FCM and analytical solutions.
-
Key words:
- groundwater pollution /
- reactive transport /
- biodegradation /
- finite cell method.
-
表 1 数值模拟问题2时所用的各种参数值
Table 1. Values of parameters in problem 2
-
[1] Bear J. 多孔介质流体动力学[M]. 李竟生, 陈崇希, 译. 北京: 中国建筑工业出版社, 1983.Bear J. Dynamics of fluids in porous media[M]. Translated by LI J S, CHEN C X. Beijing: China Architecture & Building Press, 1983. [2] Sun N Z. Mathematical modeling of groundwater pollution [M]. New York: Springer-Verlag, 1996. [3] Sun N Z. Modeling biodegradation processes in porous media by the finite cell method[J]. Water Resour Res, 2002, 38(3): 1-11. [4] Rashid M, Kaluarachchi J J. A simplified numerical algorithm for oxygen-and nitrate-based biodegradation of hydrocarbons using Monod expressions[J]. J Contam Hydrol, 1999, 40(1): 53-77. doi: 10.1016/S0169-7722(99)00032-7 [5] Cirpka O A, Frind E O, Helmig R. Numerical simulation of biodegradation controlled by transverse mixing[J]. J Contam Hydrol, 1999, 40(2): 159-182. doi: 10.1016/S0169-7722(99)00044-3 [6] Tompson A F B. Numerical simulation of chemical migration inphysically and chemically heterogeneous porous media[J]. Water Resour Res, 1993, 29(11): 3709-3726. doi: 10.1029/93WR01526 [7] BosmaW J P, van de Zee S E A T M, van Duijn C J. Plume development of a nonlinearly adsorbing solutein heterogeneous porous formations[J]. Water Resour Res, 1996, 32(6): 1569-1584. doi: 10.1029/96WR00636 [8] Labolle E M, Fogg G E, Tompson A F B. Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods [J]. Water Resour Res, 1996, 32(3): 583-594. doi: 10.1029/95WR03528 [9] Delay F, Housset H, Porel G, et al. Transport in a2-D saturated porousmedium: A new method for particle tracking[J]. Math Geol, 1996, 28(1): 45-71. doi: 10.1007/BF02273523 [10] Sun N Z. A finite cell method for simulating the mass transport process in porous media[J]. Water Resour Res, 1999, 35(12): 3649-3662. doi: 10.1029/1999WR900187 [11] Murphy E M, Ginn T R. Modeling microbial processes in porous media[J]. Hydrol J, 2000, 8(1): 142-158.