• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地下非均匀非饱和带中地下洞室的渗流问题数值模拟——介质参数的灵敏度分析

    李国敏 TsangChin-Fu

    李国敏, TsangChin-Fu, 2003. 地下非均匀非饱和带中地下洞室的渗流问题数值模拟——介质参数的灵敏度分析. 地球科学, 28(5): 497-504.
    引用本文: 李国敏, TsangChin-Fu, 2003. 地下非均匀非饱和带中地下洞室的渗流问题数值模拟——介质参数的灵敏度分析. 地球科学, 28(5): 497-504.
    LI Guo-min, Tsang Chin-Fu, 2003. Numerical Modeling of Seepage into Underground Openings in a Heterogeneous Continuum: A Sensitivity Study of Media Parameters. Earth Science, 28(5): 497-504.
    Citation: LI Guo-min, Tsang Chin-Fu, 2003. Numerical Modeling of Seepage into Underground Openings in a Heterogeneous Continuum: A Sensitivity Study of Media Parameters. Earth Science, 28(5): 497-504.

    地下非均匀非饱和带中地下洞室的渗流问题数值模拟——介质参数的灵敏度分析

    基金项目: 美国能源部民用放射性废物管理基金项目
    详细信息
      作者简介:

      李国敏(1963-), 男, 博士, 曾任中国地质大学(武汉)副教授, 1996—1997年在瑞士联邦苏黎士理工学院从事博士后研究, 1997年至今在美国劳伦斯伯克利国家实验室工作, 任地球科学部地质科学家.E-mail: gmli@lbl.gov

    • 中图分类号: P641.2

    Numerical Modeling of Seepage into Underground Openings in a Heterogeneous Continuum: A Sensitivity Study of Media Parameters

    • 摘要: 影响任何一个地下废物处置场所长期行为的一个重要因素是进入地下废物贮置洞室内的渗流量的大小.预测地下洞室中的渗流量是困难的, 特别是当地下废物贮置洞室位于非均质非饱和带中.三维数值模型用于研究地下非均质中非饱和流动及流入地下洞室中的渗流量.讨论了非均质模型与均质模型的比较以及数值剖分尺度对计算结果的影响.进入洞室中的渗漏率随着引入系统中入渗量的增加而增大.选用4个参数来衡量渗流场的非均质程度: (1) 介质的平均渗透率K0; (2) VanGenuchten参数α; (3) 渗透率空间分布相关尺度; (4) 渗透率空间分布变化的标准差σ.根据一个随机实现的渗透率分布, 通过改变平均渗透率来研究其对流入洞室中渗透量的影响.对一个固定的入渗率而言, 流入洞室中的渗漏率将随着VanGenuchten参数α的减小而减小.模拟结果表明流入洞室的渗漏率与介质的平均渗透率相关, 即随平均渗透率的增大, 流入洞室的渗漏率亦增大.流入洞室的渗漏率还高度依赖于非均质渗透率场的空间分布相关长度与标准差.一个大的相关长度或高的标准差均能导致流入洞室的渗漏率增大.

       

    • 图  1  模型范围及网格设计

      Fig.  1.  Model domain and mesh design

      图  2  三维非均质渗流场中水平剖面(a) 和垂向剖面(b) 上水饱和度分布(入渗量为500 mm/a, 参数见表 1)

      Fig.  2.  Saturation profiles on horizontal planes (a) and vertical planes (b) in a 3-D heterogeneous field for basecase properties and a percolation flux of 500 mm/year

      图  3  渗漏率与入渗量、网格大小的关系曲线

      a.渗漏率与入渗量关系曲线; b. 3种剖分方案条件下3种随机实现的非均质模型中渗漏率与入渗量关系曲线; c.在50 mm/a和500 mm/a 2种入渗量(Qp) 条件下, 3种随机实现的非均质模型中渗漏率与网格大小的关系曲线

      Fig.  3.  Seepage percentage as a function of percolation flux and grid size

      图  4  基础方案条件下3种随机实现的非均质模型中渗漏率与入渗量(a)、介质平均渗透率(b) 的关系曲线; c.渗漏率和Van Genuchten参数1/α的关系曲线(b, c的入渗量为213 mm/a, 参数见表 1)

      Fig.  4.  Seepage percentage as a function of percolation flux (a), mean permeability (b) for three realizations in the heterogeneous model with the basecase properties, and seepage percentage as a function of Van Genuchten parameter 1/α from 200 to 800 Pa with a percolation flux of 213 mm/year (c)

      图  5  2种渗透率的自然对数标准差条件下水饱和度分布(入渗量为213 mm/a, 参数见表 1)

      Fig.  5.  Saturation profiles for the standard deviation σ of ln k=1.66 (a) and 1.0 (b) with basecase properties and a percolation flux of 213 mm/year

      图  6  a.3种随机实现的非均质模型中渗漏率与渗透率空间变化的自然对数标准差(σ) 关系曲线; b.5种随机实现随机模拟结果的平均渗漏率与渗透率空间分布的相关长度(λ) 关系曲线

      Fig.  6.  Seepage percentage as a function of the standard deviation σ (in natural log) of permeability for three realizations of the heterogeneous model for a percolation flux of 73.2 mm/year (a); Mean seepage percentage over five realizations as a function of correlation length for the basecase with a percolation flux of 213 mm/year (b)

      图  7  2种渗透率空间分布相关长度1 m (a) 与4 m (b) 条件下的非均匀渗透率空间分布

      Fig.  7.  Heterogeneous permeability fields for the correlation length 1 m (a) and 4 m (b)

      图  8  2种渗透率空间分布相关长度1 m (a) 与4 m (b) 条件下水饱和度的空间分布(入渗量为213 mm/a)

      Fig.  8.  Saturation profiles for the correlation length of 1 m (a) and 4 m (b) with basecase properties and a percolation flux of 213 mm/year

      表  1  基础方案中的参数组

      Table  1.   Basecase parameters set used for fracture continuum in drift scale modeling

    • [1] Philip J R, Knight J H, Waechter R T. Unsaturated seepage and subterranean holes: Conspectus and exclusion problem for circular cylindrical cavities[J]. Water Resour Res, 1989, 25: 16-28. doi: 10.1029/WR025i001p00016
      [2] Yeh T-C J, Gelhar L W, Gutjahr A L. Stochastic analysis of unsaturated flow in heterogeneous soils: 1. Stochastically isotropic media[J]. Water Resour Res, 1985, 21: 447-456. doi: 10.1029/WR021i004p00447
      [3] Yeh T-C J, Gelhar L W, Gutjahr A L. Stochastic analysis of unsaturated flow in heterogeneous soils: 2. Stochastically isotropic media with variable α[J]. Water Resour Res, 1985, 21: 457-464. doi: 10.1029/WR021i004p00457
      [4] Yeh T-C J, Gelhar L W, Gutjahr A L. Stochastic analysis of unsaturated flow in heterogeneous soils: 3. Obervation and applications[J]. Water Resour Res, 1985, 21: 465-471. doi: 10.1029/WR021i004p00465
      [5] Birkholzer J T, Li G, Tsang C-F, et al. Modeling studies and analysis of seepage into drifts at Yucca Mountain [J]. J Contaminant Hydrol, 1999, 38 (1 -3): 349 - 384.
      [6] Pruess K. TOUGH2-A general purpose numerical simulator for multiphase fluid and heat flow[R]. Report LBL-29400, Lawrence Berkeley National Laboratory, Berkeley, California, 1991.
      [7] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soil[J]. Soil Sci Soc J, 1980, 44: 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
      [8] Li G, Tsang C-F. Seepage model for PA including drift collapse, MDL-NBS-HS-000002 REV01[DB/OL]. CRWMS M&O, Las Vegas, Nevada, 2000.
      [9] Li G, Tsang C-F. Seepage into drift with mechanical degradation[J]. J Contaminant Hydrol, 2003, 62-63: 157-172. doi: 10.1016/S0169-7722(02)00171-7
      [10] Sonnenthal E, Ahlers C F, Bodvarsson G S. Fracture and fault properties for the UZ site-scale flow model [R]. Yucca Mountain Project Milestone Report SP24UFM4, Lawrence Berkeley National Laboratory Report LBNL-40376, Berkeley, CA, 1997.
      [11] Tsang Y W, Cook P. Ambient characterization of the ESF drift scale test area by field air-permeability measurements[R]. Yucca Mountain Project Milestone Report SP9512 M4, Lawrence Berkeley National Laboratory, Berkeley, CA, 1997.
      [12] Wang J S Y, Trautz R C, Cook P J, et al. Field tests and model analyses of seepageinto drift[J]. J Contaminant Hydrol, 1999, 38 (1-3): 323-347. doi: 10.1016/S0169-7722(99)00019-4
      [13] Tsang Y W, Birkholzer J T. Multiphase thermal-hydrological processesin thesingle heater test at Yucca Mountain[J]. J Contaminant Hydrol, 1999, 38(1-3): 385 -425. doi: 10.1016/S0169-7722(99)00021-2
      [14] FinsterleS, Ahlers C F, Trautz R C. Seepage calibration model and seepage testing data, MDL-NBS-HS000004 REV01[DB/OL]. Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O): Las Vegas, Nevada. Lawrence Berkeley National Laboratory, Berkeley, CA, 2000.
      [15] Nitao J S. Preliminary bounds for the drift-scale distribution of percolation and seepage at the repository level under pre-emplacement conditions[R]. Yucca Mountain Project Deliverable No. SPLB1 M4. Lawrence Livermore National Laboratory, Livermore, California, 1997.
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  3571
    • HTML全文浏览量:  528
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2003-07-11
    • 刊出日期:  2003-09-25

    目录

      /

      返回文章
      返回