Genesis and Evaluation of Low Resistivity Oil Formation in Tarim Basin
-
摘要: 随着塔里木盆地油气勘探工作的深入, 相继发现了一批低电阻油层, 油层电阻率最低达0.4 5Ω·m, 与水层的电阻率几乎相当.通过对轮南侏罗系JⅣ、吉拉克三叠系TⅡ和哈得逊石炭系CⅢ 3套低电阻油层的地质与实验分析认为, 引起低电阻的主要原因是黄铁矿的局部富集、粘土矿物以及高矿化度束缚水等的附加导电, 提出利用毛管压力资料, 建立油藏物性、油层高度与含油饱和度的关系以及采用高温高压岩电参数等不同的评价方法, 从而使计算的饱和度提高8%~ 2 5 %, 测井解释符合率上升5 %~ 8%.Abstract: As petroleum exploration continues, a series of low-resistivity oil reservoirs have been found in the Tarim basin. The lowest resistivity of the oil reservoir is only 0.45 Ω·m, almost identical to the resistivity of water layer. Geological observations and experimental analyses on the Jurassic (JⅣ) low-resistivity oil reservoir in Lunnan, Triassic (TⅡ) low-resistivity oil reservoir in Jilake and Carboniferous (CⅢ) low-resistivity oil reservoir in Hadexun indicate that the main causes of the low resistivity of the oil reservoirs are the local enrichment of pyrite and the additional electricity conducting effect of clay minerals and the low salinity bound water. Several evaluation methods using different data such as capillary pressure, oil saturation and rock electrical parameters under high temperature and high pressure conditions are presented. Using these methods, the calculated oil saturation increases by 8% to 25%, and the accuracy of well logging explanation increases by 5% to 8%.
-
Key words:
- low resistivity /
- clay adhesive conduct /
- bound water /
- pyrite /
- salinity /
- saturation
-
-
Givens, W.W., 1987. A conductive rock matrix model(CRMM) for the analysis of low-contrast resistivity formations. The Log Analyst, 17: 72- 76. https://onepetro.org/petrophysics/article/171896/A-Conductive-Rock-Matrix-Model-crmm-For-The Hilich, D.W., 1989. Modern well log interpretation. Translated by Gong, W. H., Zhang, Z. W. . Petroleum Industry Press, Beijing(in Chinese). Hill, H.J., Milburn, J.D., 1950. Effect of clay and water salinity on electrochemical behavior of reservoir rocks. Petroleum Transactions, 81(5): 233- 238. https://onepetro.org/TRANS/article/207/01/65/160843/Effect-of-Clay-and-Water-Salinity-on Mao, Z.Q., 2003. Controlling effects of poor permeable layers upon accumulation and distribution of hydrocarbon in inhomogeneous sandstone reservoir. Earth Science— Journal ofChina University of Geosciences, 28(2): 196- 200(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200302014.htm Ouyang, J., Peng, L.C., Yan, J., et al., 1994. Well log interpretation and reservoir description. Petroleum Industry Press, Beijing(in Chinese). Waxman, M.H., Thomas, F.C., 1974. Electrical conductivities in oil-bearing shaly sands— Ⅰ. The relation between hydrocarbon saturation and resistivity index; Ⅱ. The temperature coefficient of electrical conductivity. SPE Journal, 14: 374- 379. doi: 10.2118/4094-PA Xie, R.H., 2001. Log interpretation method of oil & gas formation with low resistivity. Well Logging Technology, 25 (3): 199- 203(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200103010.htm Zeng, W.C., 1991. Reservoir well logging evaluation technology. Petroleum Industry Press, Beijing(in Chinese). 希尔契, D.W., 1989. 现代测井解释. 龚伟华, 张中伟, 译. 北京: 石油工业出版社. 毛志强, 2003. 非均质储层夹层控油作用初论——非均质储层油气分布规律及测井响应特征. 地球科学——中国地质大学学报, 28(2): 196- 200. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302014.htm 欧阳健, 彭立纯, 燕军, 等, 1994. 石油测井解释与储层描述. 北京: 石油工业出版社. 谢然红, 2001. 低电阻率油气层测井解释方法. 测井技术, 25 (3): 199- 203. doi: 10.3969/j.issn.1004-1338.2001.03.009 曾文冲, 1991. 油气藏储集层测井评价技术. 北京: 石油工业出版社.