Determining Criterions for Natural Biodegradation of Chlorinated Hydrocarbons in Shallow Groundwater
-
摘要: 天然条件下氯代烃生物降解的判别, 是确定氯代烃污染天然衰减恢复治理技术是否可以采用的关键, 可为天然衰减恢复治理技术的应用提供技术支持.通过分析氯代烃生物降解的特性发现, 地下水环境中氯代烃的生物降解, 必然伴随有第一基质、电子受体、中间产物以及有关的一些间接性指标, 在污染羽状体不同位置及污染羽状体内外产生明显变化, 这些指标的变化均可以不同程度地指示氯代烃生物降解的产生.据此总结出氯代烃生物降解衰减的判别依据分别为电子受体、第一基质(能源和碳源) 及降解中间产物三类指标.Abstract: Natural biodegradation is one of the important processes resulting in the decrease of chlorinated pollutants in environments. Identification of the occurrence of natural biodegradation is thus the key issue to evaluate the practicability of the natural attenuation of these compounds. Through the analysis of the characteristics of biodegradation, we found that, the biodegradation of chlorinated compounds in groundwater environments always leads to the visible change of electron acceptors, primary substances, intermediate products, and other indirect indexes. The spatial variation of these substances around the different locations of the polluted plumes is proposed to be a consequence of biodegradation of chlorinated compounds. On this basis, this paper summarized the determining criterions for the evaluation of biodegradation of chlorinated hydrocarbons in groundwater under natural conditions, including electron acceptors, primary substances and intermediate products.
-
Key words:
- chlorinated solvent /
- natural attenuation /
- biodegradation /
- determining criterion
-
表 1 几种常见氯代烃在好氧和厌氧条件下降解转化的统计结果
Table 1. Degradation of common chlorinated solvents under aerobic and anaerobic conditions
表 2 天然条件下地下水中氯代烃微生物降解判定的分析指标及评分
Table 2. Analytical parameters and weightings for estimating biodegradation of chlorinated solvents in groundwater under natural conditions
-
Barrio, L.G., Parsons, F.Z., Nassar, R.S., et al., 1986. Sequential dehalogenation of chlorinated ethenes. Environ. Sci. Technol. , 20: 96-99. doi: 10.1021/es00143a013 Beak International, Dow Chemical Company, DuPont Company, et al., 1997. Natural attenuation of chlorinated solvents in groundwater: Principles and practices. Technical/ Regulatory Guidelines. Beneteau, K.M., Aravena, R., Frape, S.K., 1999. Isotopic characterization of chlorinated solvents—Laboratory and field results. Organic Geochemistry, 30: 739-753. doi: 10.1016/S0146-6380(99)00057-1 Bouwer, E.J., McCarty, P.L., 1983. Transformation of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. , 45: 1286-1294. doi: 10.1128/aem.45.4.1286-1294.1983 Burback, B.L., 1994. Effect of environmental pollutants and their metabolites on a soil mycobacterium. Appl. Microbiol. Biotechonl. , 41: 134-136. doi: 10.1007/BF00166095 Distefano, T.D., Gossett, J.M., Zinder, S.H., 1991. Reductive dechlorination of high concentrations of tetrachloroethene to ethane by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. , 57: 2287-2292. doi: 10.1128/aem.57.8.2287-2292.1991 Eguchi, M., Kitagawa, M., Suzuki, Y., et al., 2001. A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Wat. Res. , 35(9): 2145-2152. doi: 10.1016/S0043-1354(00)00494-2 Freedman, D. L., Gossett, J.M., 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. , 55: 2144-2151. doi: 10.1128/aem.55.9.2144-2151.1989 Gao, J.W., Skeen, R.S., 1999. Glucose-induced biodegradation of cis-dichloroethylene under aerobic conditions. Wat. Res. , 33(12): 2789-2796. doi: 10.1016/S0043-1354(98)00502-8 GeoSyntec Consultants, Dow Chemical Company, DuPont Company, et al., 1999. Natural attenuation of chlorinated solvents in groundwater: Principles and practices. Technical/ Regulatory Guidelines. Gillham, R.W., O' Hannesin, S.F., 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32: 958-967. doi: 10.1111/j.1745-6584.1994.tb00935.x Hirl, P.J., Irvine, R. L., 1997. Reductive dechlorination of perichloroethylene anaerobic sequencing batch bio-film reactors(AnSEER). Wat. Sci. Tech. , 35: 49-56. Interstate Technology and Regulatory Cooperation Work Group, DNAPLs/Chemical Oxidation Work Team, 2002. Dense non-aqueous phase liquids(DNAPLs): Review of emerging characterization and remediation technologies. Interstate Technology and Regulatory Cooperation Work Group, In Situ Chemical Oxidation Work Team, 2001. Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater. Klier, N. J., West, R. J., Donberg, P. A., 1999. Aerobic biodegradation of dichloroethylenes in surface and subsurface soils. Chemosphere, 38(5): 1175-1188. doi: 10.1016/S0045-6535(98)00485-8 Knauss, K.G., Dibley, M., Leif, R.N., et al., 1999. Aqueous oxidation of trichloroethene(TCE): Akinetic analysis. Applied Geochemistry, 14: 531-541. doi: 10.1016/S0883-2927(98)00084-5 Komatsu, T., Shinymo, J., Momonoi, K., 1997. Reductive transformation of tetrachloroethylene to ethylene and ethane by an anaerobic filter. Wat. Sci. Tech. , 36: 125-132. Liu, F., Zhong, Z.S., 2001. Treatment technology of volatile chlorinated organic compounds in groundwater by permeable reactive barrier. Earth Science Frontiers, 8(2): 309-314(in Chinese with English abstract). Magnuson, J.K., Stern, R.V., Gossett, J.M., et al., 1998. Reductive dechlorination of tetrachloroethene to ethane by a two-component enzyme pathway. Appl. Environ. Microbiol. , 64: 1270-1275. doi: 10.1128/AEM.64.4.1270-1275.1998 Matheson, L.J., Tratyek, P.G., 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. , 28: 2046-2053. McCarty, P.L., Semprini, L., 1994. Ground-water treatment for chlorinated solvents. In: Mattew, J.E., ed., Handbook of bioremediation. Lewis Pub, NY, USA, 87-116. Minnesota Pollution Control Agency, 1999. Guidelines, natural attenuation of chlorinated solvents in ground water, Minnesota Pollution Control Agency Site Remediation Section. O' Hannesin, S.F., Gillham, R.W., 1998. Long-term performance of an in situ"iron wall" for remediation of VOCs. Ground Water, 36: 164-170. doi: 10.1111/j.1745-6584.1998.tb01077.x Orth, W. S., Gillham, R. W., 1996. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. , 30: 66-71. doi: 10.1021/es950053u Schollhorn, A., Savary, C., Gerhard, S., et al., 1997. Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions. Wat. Res. , 31: 1275-1282. doi: 10.1016/S0043-1354(96)00130-3 Tandol, V., DiStefano, T.D., Bowser, P.A., et al., 1994. Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environ. Sci. Technol. , 28: 973-979. doi: 10.1021/es00054a033 Vogel, T.M., McCarty, P.L., 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinly chloride and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. , 49: 1080-1083. doi: 10.1128/aem.49.5.1080-1083.1985 Yang, L., Chang, Y.F., Chou, M.S., 1999. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia. Journal ofHazardous Materials, B69: 111-126. 刘菲, 钟佐, 2001. 地下水中氯代烃的格栅水处理技术. 地学前缘, 8(2): 309-314. doi: 10.3321/j.issn:1005-2321.2001.02.014