Nanoparticle Size and Melting Point Relationship
-
摘要: 推导纳米粒子的熔点与其粒径的定量关系, 并从热力学的角度阐明纳米粒子烧结过程的实质及烧结温度与粒径的关系.利用热力学及表面化学的有关理论, 虚拟固相和液相之间的相变过程, 根据相平衡条件, 将纳米粒子的熔点与粒径联系起来, 并以金属铅(Pb) 为例进行计算.结果表明, 纳米粒子粒径越小, 比表面自由能越高, 其化学势则比相同条件下的块状固体高很多, 导致其熔点和烧结温度大大低于同样材质的块状固体.以金属Pb为例, 通过熔点和粒径之间的定量关系计算的结果与实验结果吻合.因此纳米粒子的熔点和烧结温度与其粒径有关, 即粒子越小, 熔点和烧结温度越低.Abstract: To deduce the quantitative relationship between the melting point of nanoparticles and their radius, and set forth the sintering processes of nano-systems and the qualitative relation between the sintering temperature and the radius of nanoparticles from a thermodynamics angle, the phase transition process between solid and liquid states has been proposed, and thermodynamics and surface chemistry theories and phase equilibrium conditions were used. The relationship was applicable to lead (Pb). The results show that owing to its small size and high special surface free energy, the chemical potential of a material in the form of nanoparticles was much higher than that of the bulk. As a result, the melting point of nanoparticles was depressed in comparison to that of the bulk crystals. The calculated results for met al lead were coincident with the experimental ones. So there is a relationship between the melting point and the sintering temperature of a nanoparticle and its radius. The smaller the nanoparticle radius, the lower the melting point and sintering temperature.
-
Key words:
- nanoparticle /
- melting point /
- sintering temperature /
- radius
-
表 1 纳米金属Pb的熔点随其粒径的变化
Table 1. Size dependence of the melting point of nano-Pb
-
[1] Chen, D., 1994. Study of the structural model and properties of nanocrystal. Acta Met allurgica Sinica, 30 (8): 348-354 (in Chinese with English abstract). [2] Chen, J. Z., 1994. The development of nano-technology and the study of nano-mineralogy. Geological Science and Technology Information, 13: 32-35 (in Chinese with English abstract). [3] Huang, X. R., 2001. Sintering of macrofiltration membrane of alumina with nanometer aluminum hydroxide additive. New Technology and New Process, 10: 35-36 (in Chinese with English abstract). [4] Jiang, Z. D., Fan, X. J., 1994. Principles and applications of colloid and surface chemistry. Hubei Science and Technology Press, Wuhan, 58-63 (in Chinese). [5] Liu, H. B., Ascencio, J. A., Perez-Alvarez, M., et al., 2001. Melting behavior of nanometer sized gold isomers. Surface Science, 491: 88-98. doi: 10.1016/S0039-6028(01)01351-6 [6] Lu, K., Jin, Z. H., 2001. Melting and superheating of low-dimensional materials. Current Opinion in Solid State and Materials Science, 5: 39-44. doi: 10.1016/S1359-0286(00)00027-9 [7] Ryu, S. S., Kim, Y. D., Moon, I. H., 2002. Diatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying. Journal of Alloys and Compounds, 335: 233-240. doi: 10.1016/S0925-8388(01)01805-9 [8] Semenchenko, V. K., 1961. Surface phenomena in metals and alloys. Pergamon, Oxford, 281. [9] Sheng, H. W., Hu, Z. Q., Lu, K., 1997. Melting and freezing behaviors of Pb nanoparticles embedded in an Almatrix. Nano Structured Materials, 9: 661-664. doi: 10.1016/S0965-9773(97)00145-1 [10] Yin, B. Y., 2001. Nano-times—Reality and dream. Chinese Light Industry Press, Beijing (in Chinese). [11] Yin, Y. J., 1988. Hands of physical chemistry. High Educational Press, Beijing (in Chinese). [12] Zeng, P., Zajac, S., Clapp, P. C., et al., 1998. Nanoparticles sintering simulations. Materials Science and Engineering, A252: 301-306. [13] Zhang, L. D., 2001. The preparation and the applied technology of ultrafined powders. Chinese Petrochemistry Press, Beijing (in Chinese with English abstract). [14] Zhang, L. D., Mu, J. M., 2001. Nanometer materials and nan-ometer structure. Science Press, Beijing (in Chinese with English abstract). [15] 陈达, 1994. 纳米晶体的结构模型及性质研究. 金属学报, 30 (8): 348-354. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB408.002.htm [16] 陈敬中, 1994. 纳米科技发展与纳米矿物学研究. 地质科技情报, 13: 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.007.htm [17] 黄肖容, 2001. 纳米氢氧化铝对微滤氧化铝膜烧结的影响. 新技术新工艺, 10: 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200110016.htm [18] 蒋子铎, 樊西惊, 1994. 胶体与界面化学原理及其应用. 武汉: 湖北科学技术出版社, 58-63. [19] 尹帮跃, 2001. 纳米时代——现实与梦想. 北京: 中国轻工业出版社. [20] 印永嘉, 1988. 物理化学简明手册. 北京: 高等教育出版社. [21] 张立德, 2001. 超微粉体制备与应用技术. 北京: 中国石化出版社. [22] 张立德, 牟季美, 2001. 纳米材料和纳米结构. 北京: 科学出版社.