Establishment of the Plio-Pleistocene Astronomical Timescale of ODP Site 1143, Southern South China Sea
-
摘要: 基于底栖有孔虫δ18O的精确的年代标尺是古海洋学研究的基础, 特别是长度超过5 Ma, 分辨率小于5 ka的连续δ18O记录在全球大洋深海记录中更是凤毛麟角.在大西洋和东太平洋已经建立起了类似的代表性剖面, 如大西洋ODP659站和东太平洋ODP846站, 但在对全球气候有着重要影响的“西太平洋暖池区”还没有建立起这样的剖面.以南海大洋钻探184航次1143站底栖有孔虫的δ18O为材料, 建立了西太平洋地区跨越5 Ma、分辨率达2~ 3 ka的天文年代标尺.天文调谐的基本原理参照Imbrie et al.(1984), 并将斜率周期上8 ka的相位差和岁差周期上5 ka的相位差从晚更新世扩展到5 Ma; 调谐目标选用Laskar(1990)的斜率和岁差; 调谐方法采用了有别于ODP659站和ODP846站的自动轨道调谐方法(Yu and Ding, 1998).调谐结果显示, 1143站190.77 m、191个冰期、间冰期的深海沉积记录了5.02 Ma的南海古海洋学历史; 1143站布容/松山磁性反转事件的年龄为0.78 Ma, 与前人研究结果一致; 15个识别出的浮游有孔虫生物事件年龄部分与已经发表过的年龄相吻合, 部分为该生物事件在南沙海区的新年龄.由年代标尺推导出的南海沉积特征显示, 2.9 Ma是沉积速率的一个转折点, 在此之前, 平均线性沉积速率只有39.5 m/Ma, 冰期、间冰期平均波动幅度为50 m/Ma; 2.9 Ma以后, 平均线性沉积速率猛然上升到65.4 m/Ma, 冰期、间冰期平均波动幅度为200 m/Ma.此外, 南海的沉积速率还显示出冰期或间冰期中的亚冰阶沉积速率高, 而相邻的间冰期或亚间冰阶的沉积速率低, 这种特点在更新世尤为典型.这可能与全球冰量变化带来的冰期、间冰期差异性风化剥蚀和搬运有关.Abstract: An accurate timescale derived from benthic foraminiferal δ18O is crucial to paleoceanographic studies. In global oceans, there are few continuous δ18O records for the benthic foraminifers which span the past 5 Ma and have time resolution better than 5 ka. Such representative profiles have been established for ODP Site 659 in the Atlantic and ODP Site 846 in the east Pacific, but still have been absent in the"Western Pacific Warm Pool", an area playing an important role in global climate changes. Based on the benthic foraminiferal δ18O of ODP Site 1143 in the southern South China Sea, we establish a 5 Ma astronomical timescale for the west Pacific Plio-Pleistocene, with a time resolution of ~ 2-3 ka. The phases are fixed at 8 ka and 5 ka for the obliquity and precession bands respectively, and have been applied throughout the whole records. Obliquity and precession are calculated and treated as the tuning targets.An automatic orbital tuning method has been applied in this study, which is more efficient than those used at ODP Site 659 and 846. The results show that the 190.77 m long deep sea sediments in the South China Sea have recorded a paleoceanographic history of ~ 5.02 Ma, corresponding to 191 glacial/interglacial cycles. The tuned Brunhes/Matuyama paleomagnetic polarity reversal agrees well with an age of 0.78 Ma dated previously. The tuned ages for several planktonic foraminifer bio-events also agree well with published dates, and new ages for some other bio-events in the South China Sea are also estimated. The sedimentation rates calculated from this new timescale indicate that 2.9 Ma is a threshold for the sedimentation rate in the location of Site 1143. Before this time, the average sedimentation rate is ~ 39.5 m/Ma, with a small amplitude of ~ 50 m/Ma.After this time, the average sedimentation rate jumped to ~ 65.4 m/Ma, with an amplitude as large as 200 m/Ma. In addition, the sedimentation ratesin the southern South China Sea were higher during glacials or stadials but lower during interglacials orinterstadials, especially in the late Pleistocene period. This feature might be related to the global ice volume changes, which caused different erosion, denudation and transportation during glacials and interglacials.
-
Key words:
- South China Sea /
- ODP Site 1143 /
- Pliocene /
- Pleistocene /
- astronomical timescale
-
图 2 ODP1143站底栖有孔虫δ18O 5Ma天文调谐的年代表与Shackleton 6 Ma合成的δ18O曲线(Shackleton et al., 1983, 1990, 1995)
Fig. 2. Correlation of ODP 1143 δ18O data with Shackleton's 6 Ma composite δ18O curve
图 3 南海南部ODP1143站底栖有孔虫δ18O与地球轨道参数ETP的交叉频谱分析
a.0~1 Ma; b.1~2 Ma; c.2~3 Ma; d.3~4 Ma; e.4~5 Ma.正交化后的频谱强度使用对数坐标(log).实线代表ETP的频谱, 虚线代表同位素的频谱, 点划线代表相关系数(coherency) 的频谱.相关系数的频谱使用双曲线反切数坐标(hyperbolic arctangent).上下的水平实线分别代表相关系数代表超过95%和80%的检验标准.灰色的长方条分别代表 10万年、4.1万年、2.3万年和1.9万年的米兰科维奇周期范围.ETP是正交化后的偏心率、斜率和负岁差的总和.采用Laskar90 (1990) 地球轨道计算方案
Fig. 3. Cross spectrum analyses of δ18O with ETP for different time intervals
图 4 南海南部ODP1143站底栖有孔虫δ18O在斜率和岁差上的滤波曲线与斜率(8 ka滞后) 和岁差(5 ka滞后) 的对比
实线为滤波曲线, 虚线为斜率或岁差.斜率周期上的滤波中心频率为0.024 39 ka-1, 带宽为0.040 ka-1, 岁差周期上的滤波中心频率为0.047 62 ka-1, 带宽为0.015 ka-1.采用Turkey滤波方法(Yu and Ding, 1998)
Fig. 4. Site 1143 δ18O record filtered at the obliquity (41 ka) and precession (23 ka) bands (solid lines) compared with orbital obiliquity (8 ka lagged) and precession (5 ka lagged) (dashed lines)
表 1 ODP1143站浮游有孔虫事件的年龄
Table 1. Ages for ODP Site 1143 planktonic foraminifer bio-events
-
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. , 10: 297-317. doi: 10.1016/0277-3791(91)90033-Q Berggren, W.A., Kent, D.V., Swisher Ⅲ, C.C., et al., 1995a. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.P., et al., eds., Geochronology, time scales and global stratigraphic correlation. Spec. Publ. SEPM, 54: 129-212. Berggren, W.A., Hilgen, F. J., Langereis, C.G., et al., 1995b. Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geol. Soc. Am. Bull. , 107: 1272-1287. doi: 10.1130/0016-7606(1995)107<1272:LNCNPI>2.3.CO;2 Carter, R.M., McCave, I.N., Richter, C., et al., 1999. Proceedings of the Ocean Drilling Program. Initial Reports 181, Ocean Drilling Program, College Station, TX. Chen, J., Farrel, J.W., Murray, D.W., et al., 1995. Timescale and paleoceanographic implications of a 3. 6 m. y. oxygen isotope record from the northeast Indian Ocean(Ocean Drilling Program Site 758). Paleoceanograpy, 10: 21-47. doi: 10.1029/94PA02290 Clemens, S.C., Prell, W., Murray, D., et al., 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature, 353: 720-725. doi: 10.1038/353720a0 Hall, C.M., Farrell, J.W., 1993. Laser 40Ar/39Ar age from ash D of ODP Site 758: Dating the Brunhes-Matuyama reversal and oxygen isotope stage 19.1. Eos Trans. AGU, 74(16): 110. Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the earth's orbit: Pacemaker of the ice ages. Science, 194: 1121-1132. doi: 10.1126/science.194.4270.1121 Huang, W., Wang, P., 1998. A quantitative approach to deepwater sedimentation in the South China Sea. Sci. in China (Series D), 41: 195-201. http://www.cnki.com.cn/Article/CJFDTotal-JDXG199802011.htm Imbrie J., Hays, J.D., Martinson, D.G., et al., 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger, A., ed., Milankovitch and climate. D. Reidel, Norwell, Mass., 269-305. Laskar, J., 1990. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus, 88: 266-291. doi: 10.1016/0019-1035(90)90084-M Milankovitch, M., 1930. Mathematische Klimalehre und astronomishe Theorie der Klimasch-wankungen. In: Koppen, W., Geiger, R., eds., Handbuch der Klimatologie. Gebruder Borntraeger, Berlin, Ⅰ(A): 1-76. Mix, A. C., Le, J., Shackleton, N. J., 1995a. Benthic foraminiferal stable isotope stratigraphy of site 846: 0-1. 8 Ma. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., et al., eds., Proc. ODP Sci. Results, 138: 839-854. Mix, A.C., Pisias, N.G., Rugh, W., et al., 1995b. Benthic foraminifer stable isotope record from site 849(0-5 Ma): Local and global climate changes. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., et al., eds., Proc. ODP Sci. Results, 138: 371-412. Raymo, M.E., Oppo, D.W., Curry, W., 1997. The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective. Plaeoceanography, 12: 546-559. doi: 10.1029/97PA01019 Shackleton, N.J., Imbrie, J., Hall, M.A., 1983. Oxygen and carbon isotope record of East Pacific core V19-30: Implications for the formation of deep water in the late Pleistocene North Atlantic. Earth Planet. Sci. Lett. , 65: 233-244. doi: 10.1016/0012-821X(83)90162-0 Shackleton, N.J., Berger, A., Peltier, W.R., 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edinburgh Earth Sci. , 81: 251-261. doi: 10.1017/S0263593300020782 Shackleton, N.J., Hall, N.J., Pate, D., 1995a. Pliocene stable isotope stratigraphy of site 846. In: Pisias, N.G., Mayer, L.A., Janecek, T.R. et al., eds., Proc. ODP Sci. Results, 138: 337-355. Shackleton, N.J., Crowhurst, S., Hagelberg, T., et al., 1995b. A new late Neogene time scalel: Application to Leg 138 sites. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., et al., eds., Proc. ODP Sci. Results, 138: 73-101. Thompson, P.R., Bé, A., Duplessy, J.C., et al., 1979. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000 yr BP in the Indian and Pacific oceans. Nature, 280: 554-558. doi: 10.1038/280554a0 Tian, J., Wang, P.X., Cheng, X.R., 2004. Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerina at ODP Site 1143, southern South China Sea. Earth Sciences—Journal of China University of Geosciences, 29(1): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401000.htm Tiedemann, R., Sarnthein, M., Shackleton, N.J., 1994. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records from Ocean Drilling Program Site 659. Paleoceanography, 9: 619-638. doi: 10.1029/94PA00208 Wang, P., Tian, J., Cheng, X., 2001. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, South China Sea. Sci. in China(Series D), 44: 926-933. doi: 10.1007/BF02907085 Wang, P.X., Prell, W.L., Blum, P., et al., 2000. Proceedings of the Ocean Drilling Program, Initial Reports 184, Ocean Drilling Program College Station. Yu, Z., Ding, Z., 1998. An automatic orbital tuning method for paleoclimate records. Geophys. Res. Lett. , 25: 45254528. 田军, 汪品先, 成鑫荣, 2004. 南海ODP1143站底栖有孔虫Cibicidoides与Uvigerina稳定氧碳同位素值的均衡试验. 地球科学——中国地质大学学报, 29(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401000.htm