• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大别山双河超高压榴辉岩中的水: 微区红外光谱分析

    盛英明 夏群科 郝艳涛 王汝成 陈小明

    盛英明, 夏群科, 郝艳涛, 王汝成, 陈小明, 2005. 大别山双河超高压榴辉岩中的水: 微区红外光谱分析. 地球科学, 30(6): 673-684.
    引用本文: 盛英明, 夏群科, 郝艳涛, 王汝成, 陈小明, 2005. 大别山双河超高压榴辉岩中的水: 微区红外光谱分析. 地球科学, 30(6): 673-684.
    SHENG Ying-ming, XIA Qun-ke, HAO Yan-tao, WANG Ru-cheng, CHEN Xiao-ming, 2005. Water in UHP Eclogites at Shuanghe, Dabieshan: Micro-FTIR Analysis. Earth Science, 30(6): 673-684.
    Citation: SHENG Ying-ming, XIA Qun-ke, HAO Yan-tao, WANG Ru-cheng, CHEN Xiao-ming, 2005. Water in UHP Eclogites at Shuanghe, Dabieshan: Micro-FTIR Analysis. Earth Science, 30(6): 673-684.

    大别山双河超高压榴辉岩中的水: 微区红外光谱分析

    基金项目: 

    国家自然科学基金项目 40172027

    详细信息
      作者简介:

      盛英明(1977—),男,博士研究生,地球化学专业.E-mail:ymsaint@mail.ustc.edu.en

    • 中图分类号: 575.4; P511.5

    Water in UHP Eclogites at Shuanghe, Dabieshan: Micro-FTIR Analysis

    • 摘要: 大陆深俯冲板块到一定深度后(约90~110km), 几乎没有含水矿物存在, 超高压岩石中名义上无水矿物(NAMs) 成为俯冲板块中水的主要载体, 是示踪超高压变质流体的重要途径.对大别山双河地区超高压榴辉岩中的石榴石和绿辉石进行了详细的微区傅立叶变换红外光谱(MicroFTIR) 分析.FTIR结果显示所有石榴石和绿辉石颗粒都含有结构水, 以OH的形式存在, 其含量范围分别为(30~1860)×10-6和(360~620)×10-6.榴辉岩全岩水含量为(300~750)×10-6, 表明即使是在超高压变质作用的温压条件下, 榴辉岩也可以至少携带数百10-6的水进入深部地球.对石榴石颗粒内部的多点观察发现, 结构水含量的分布出现2种情况: (1) 颗粒内部的均一分布; (2) 核部水含量高而边部低.石榴石颗粒边部的低水含量可能是抬升过程中由于压力降低引起的H扩散所致, 扩散出来的H可能构成了早期退变质流体的重要来源.对于同一样品来说, 结构水含量在绿辉石和石榴石之间的比值为0.5~3.5.

       

    • 图  1  大别山地质简图及双河的位置

      Fig.  1.  Simplified geological map of Dabieshan and locality of Shuanghe

      图  2  大别山双河榴辉岩中石榴石的代表性红外光谱(a)、石榴石红外光谱与水合钙铝榴石(hydrogrossular, Rossman and Aines, 1991)、钙铁榴石(andradite, Amthauer and Rossman, 1998)、水合钙铁榴石(hydroandradite, Amthauer and Rossman, 1998) 的比较(b)、双河超高压榴辉岩中绿辉石的代表性红外光谱(c)

      a.上、下两图分别显示颗粒内部水含量核高边低和均一分布的情况, C.核部, R.边部

      Fig.  2.  Representative spectra of garnets from UHP eclogites at Shuanghe, Dabieshan (a); Comparison of spectra of Shuanghe garnets with hydrogrossular (Rossman and Aines, 1991), andradite (Amthauer and Rossman, 1998) and hydroandradite (Amthauer and Rossman, 1998) (b); Representative spectra of omphacites from UHP eclogites at Shuanghe, Dabieshan (c)

      图  3  大别山双河超高压榴辉岩中石榴石结构水含量的柱状图(a)、双河榴辉岩中绿辉石的水含量与Kazakhstan榴辉岩中绿辉石水含量的比较(Kazakhstan绿辉石数据引自Katayama and Nakashima, 2003) (b)

      Fig.  3.  Histogram of water content of garnets from UHP eclogites at Shuanghe, Dabieshan (a), comparison of water content of Shuanghe omphacites with that of Kazakhstan omphacites (Katayama and Nakashima, 2003) (b)

      图  4  大别山双河石榴石中结构OH吸收强度与流体包裹体中分子水吸收强度

      结构OH吸收强度表示为Group Ⅱ和Ⅲ的积分面积之和, 分子水吸收强度表示为Group Ⅰ的积分面积, 详细数据见表 3

      Fig.  4.  Relationship between intensity of structural OH and intensity of water in submicroscopic inclusions in garnets from UHP eclogites at Shuanghe, Dabieshan. Intensity of structural OH is the sum of areas of group Ⅱ and group Ⅲ, intensity of inclusion water is the area of group Ⅰ

      图  5  大别山双河榴辉岩中绿辉石的结构水含量与M2空位

      Fig.  5.  Relationship of structural OH and M2 vacancy in omphacites from UHP eclogites at Shuanghe, Dabieshan

      表  1  大别山双河榴辉岩中石榴石的化学组成

      Table  1.   Chemical compositions of garnets in eclogites from Shuanghe, Dabieshan

      表  2  大别山双河榴辉岩中绿辉石的化学组成

      Table  2.   Chemical compostions of omphacites in eclogites from Shuanghe, Dabieshan

      表  3  大别山双河榴辉岩中石榴石的红外光谱分析结果

      Table  3.   FTIR analysis of garnets from UHP eclogites at Shuanghe, Dabieshan

      表  4  大别山双河榴辉岩中绿辉石的红外光谱分析结果

      Table  4.   FTIR analysis of omphacites from UHP eclogites at Shuanghe, Dabieshan

      表  5  大别山双河榴辉岩的全岩水含量

      Table  5.   Water content of whole rocks of UHP eclogites at Shuanghe, Dabieshan

    • [1] Aines, R. D. , Rossman, G. R. , 1984a. The hydrous component in garnets: Pyraspites. Am. Mineral. , 69: 1116-1126.
      [2] Aines, R. D. , Rossman, G. R. , 1984b. Water content of mantle garnets. Geology, 12: 720-723.
      [3] Amthauer, G. , Rossman, G. R. , 1998. The hydrous component in andradite garnet. Am. Mineral. , 83: 835-840. doi: 10.2138/am-1998-7-815
      [4] Bell, D. R. , Ihinger, P. D. , Rossman, G. R. , 1995. Quantitative analysis of hydroxyl in garnet and pyroxene. Am. Mineral. , 80: 465-474. doi: 10.2138/am-1995-5-607
      [5] Bell, D. R. , Rossman, G. R. , 1992a. Water in the Earth's mantle: The role of nominally anhydrous minerals. Science, 255: 1391-1397. doi: 10.1126/science.255.5050.1391
      [6] Bell, D. R. , Rossman, G. R. , 1992b. The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib. Mineral. Petrol. , 111: 161-178. doi: 10.1007/BF00348949
      [7] Bell, D. R. , Rossman, G. R. , Moore, R. O. , 2004. Abundance and partitioning of OH in high-pressure magmatic system: Megacryst from the Monastery kimberlite, South Africa. J. Petrol. , 45: 1539-1564. doi: 10.1093/petrology/egh015
      [8] Beran, A. , Langer, K. , Andrut, M. , 1993. Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenoliths. Mineral. Petrol. , 48: 257-268. doi: 10.1007/BF01163102
      [9] Bromiley, G. D. , Keppler, H. , 2004. An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes. Contrib. Mineral. Petrol. , 147: 189-200. doi: 10.1007/s00410-003-0551-1
      [10] Chen, B. , Zheng, Y. F. , Wu, Y. B. , 2004. A study of oxygen isotopes and hydroxyl content in minerals of UHP metamorphic rocks from CCSD core 734 to 933 m. Acta Petrologica Sinica, 20(5): 1116-1132(in Chinese with English abstract).
      [11] Cong, B. L. , Zhai, M. G. , Carswell, D. A. , et al. , 1995. Petrogenesis of ultrahigh-pressure rocks and their country rocks at Shuanghe in Dabieshan, central China. Eur. J. Mineral. , 7: 119-138. doi: 10.1127/ejm/7/1/0119
      [12] Geiger, C. A. , Langer, K. , Bell, D. R. , et al. , 1991. The hydroxide component in synthetic pyrope. Am. Mineral. , 76: 49-59.
      [13] Geiger, C. A. , Stahl, A. , Rossman, G. R. , 2000. Singlecrystal IR- and UV/VIS-spectroscopic measurements on transition-metal-bearing pyrope: The incorporation of hydroxide in garnet. Eur. J. Mineral. , 12: 259-271. doi: 10.1127/0935-1221/2000/0012-0259
      [14] Katayama, I. , Nakashima, S. , 2003. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle. Am. Mineral. , 88: 229-234. doi: 10.2138/am-2003-0126
      [15] Langer, K. , Robarick, E. , Sobolev, N. V. , et al. , 1993. Single-crystal spectra of garnets from diamondiferous high-pressure metamorphic rocks from Kazakhstan: Indications for OH-, H2O, and FeTi charge transfer. Eur. J. Mineral. , 5: 1091-1100. doi: 10.1127/ejm/5/6/1091
      [16] Li, S. G. , Jzgoutz, E. , Chen, Y. Z. , et al. , 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochim. Cosmochim. Acta, 64: 1077-1093. doi: 10.1016/S0016-7037(99)00319-1
      [17] Libowitzky, E. , Rossman, G. R. , 1996. Principles of quantitative absorbance measurement in anisotropic crystals. Phys. Chem. Mineral. , 23: 319-327.
      [18] Liou, J.G., Zhang, R. Y., Eide, E.A., et al., 1996.Metamorphism and tectonics of high-pressure and ultra-highpressure belts in the Dabie-Sulu region, China.In: Harrison, M.T., Yin, A., eds., The tectonics of Asia.Cambridge Univ.Press, Cambridge, 300-344.
      [19] Lu, R. , Kepp1er, H. , 1997. Water solubility in pyrope to 100 kbar. Contrib. Mineral. Petrol. , 129: 35-42. doi: 10.1007/s004100050321
      [20] Matsyuk, S. S. , Langer, K. , Hosch, A. , 1998. Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Mineral. Petrol. , 132: 163-179. doi: 10.1007/s004100050414
      [21] Okamoto, K. , Maruyama, S. , 1999. The high-pressure synthesis of lawsonite in the MORB+H2O system. Am. Mineral. , 84: 362-373. doi: 10.2138/am-1999-0320
      [22] Paterson, M. S. , 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull. Mineral. , 105: 20-29.
      [23] Poli, S. , Schmidt, M. W. , 1997. The high-pressure stability of hydrous phases in orogenic belts: An experimental approach on eclogite-forming processes. Tectonophysics, 273: 169-184. doi: 10.1016/S0040-1951(96)00293-4
      [24] Rossman, G. R. , 1996. Studies of OH in nominally anhydrous minerals. Phys. Chem. Mineral. , 23: 299-304.
      [25] Rossman, G. R. , Aines, R. D. , 1991. The hydrous components in garnets: Grossular-hydrogrossular. Am. Mineral. , 76: 1153-1164.
      [26] Rossman, G. R. , Beran, A. , Langer, K. , 1989. The hydrous component of pyrope from the Dora Maira Massif, Western Alps. Eur. J. Mineral. , 1: 151-154. doi: 10.1127/ejm/01/1/0151
      [27] Rossman, G. R. , Smyth, J. R. , 1990. Hydroxyl contents of accessory minerals in mantle eclogites and related rocks. Am. Mineral. , 75: 775-780.
      [28] Rumble, D., 1998.Stable isotope geochemistry of ultrahighpressure rocks. In: Hacker, B. R., Liou, J. G., eds., When continents collide: Geodynamics of ultrahighpressure rocks.Kluwer Academic Publishers, Amsterdam, 241-259.
      [29] Sheng, Y.M., Xia, Q.K., Ding, Q., et al., 2005.Water in garnets from Dabieshan eclogites: FTIR analysis. Acta Mineralogica Sinica(in press)(in Chinese with English abstract).
      [30] Sheng, Y. M. , Xia, Q. K. , Yang, X. Z. , 2004a. Heterogeneity of water in UHP eclogites from Bixiling in Dabieshan: Evidence from garnet. Chinese Science Bulletin, 49(5): 481-486. doi: 10.1007/BF02900969
      [31] Sheng, Y. M. , Xia, Q. K. , Yu, H. M. , et al. , 2004b. Water in clinopyroxenes from eclogites of Bixiling and Huangzhen, Dabieshan and geodynamic implications. Acta Petrologica Sinica, 20(5): 1133-1140(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200405009.htm
      [32] Skogby, H. , Bell, D. R. , Rossman, G. R. , 1990. Hydroxide in pyroxenes: Variations in the natura1 environment. Am. Mineral. , 75: 764-774.
      [33] Smyth, J. R. , 1988. Electrostatic characterization of oxygen sites in minerals. Geochim. Cosmochim. Acta, 53: 1101-1110.
      [34] Smyth, J. R. , Bell, D. R. , Rossman, G. R. , 1991. Incorporation of hydroxyl in upper mantle clinopyroxenes. Nature, 351: 732-734. doi: 10.1038/351732a0
      [35] Snyder, G. A. , Taylor, L. A. , Jerde, E. A. , et al. , 1995. Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: Evidence from stable isotopes and hydroxyl in garnet. Am. Mineral. , 80: 799-809. doi: 10.2138/am-1995-7-816
      [36] Su, W. , Ji, Z. P. , Ye, K. , et al. , 2004. Distribution of hydrous components in jadeite of the Dabie Mountains. Earth Planet. Sci. Lett. , 222: 85-100. doi: 10.1016/j.epsl.2004.02.028
      [37] Su, W. , You, Z. D. , Cong, B. L. , et al. , 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30: 611-614. doi: 10.1130/0091-7613(2002)0302.0.CO;2
      [38] Withers, A. C. , Wood, B. J. , Carroll, M. R. , 1998. The OH content of pyrope at high pressure. Chem. Geol. , 147: 161-171. doi: 10.1016/S0009-2541(97)00179-4
      [39] Xia, Q. K. , 2005. Water in the deep subducted continental plate: Message from NAMs. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-kydh200501001.htm
      [40] Xia, Q. K. , Chen, D. G. , Rossman, G. R. , 2000. An important carrier for HP-UHP metamorphic fluids: Nominally anhydrous minerals. Geological Review, 46: 461-465(in Chinese with English abstract).
      [41] Zhang, J. F. , GreenⅡ, H. W. , Bizhilov, K. , et al. , 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428: 633-636. doi: 10.1038/nature02475
      [42] Zhang, J. F. , Jin, Z. M. , GreenⅡ, H. W. , 2001. Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountain. Chinese Science Bulletin, 46(7): 592-596. doi: 10.1007/BF02900418
      [43] Zhang, J. F. , Jin, Z. M. , GreenⅡ, H. W. , 2005. Hydroxyl induced eclogite fabric and deformation mechanism. Chinese Science Bulletin, 50(7): 685-690. doi: 10.1360/982004-274
      [44] Zheng, Y. F. , Fu, B. , Gong, B. , et al. , 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Science Reviews, 62: 105-161. doi: 10.1016/S0012-8252(02)00133-2
      [45] 陈斌, 郑永飞, 吴元保, 2004. 中国大陆科学钻探工程主孔734~933 m岩心矿物的氧同位素和羟基含量研究. 岩石学报, 20(5): 1116-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502006.htm
      [46] 盛英明, 夏群科, 丁强, 等, 2005. 大别山榴辉岩石榴石的结构水: 红外光谱分析. 矿物学报(出版中).
      [47] 盛英明, 夏群科, 杨晓志, 2004a. 大陆深俯冲过程中水分布的不均一性: 大别山碧溪岭榴辉岩中石榴石的红外光谱分析. 科学通报, 49: 390-395. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404016.htm
      [48] 盛英明, 夏群科, 于慧敏, 等, 2004b. 大别山碧溪岭和黄镇榴辉岩中绿辉石的结构水: 对原岩性质和动力学过程的制约. 岩石学报, 20(5): 1133-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200405009.htm
      [49] 夏群科, 2005. 大陆深俯冲过程中的水: "名义上无水矿物"的信息. 矿物岩石地球化学通报, 24(1): 1-7. doi: 10.3969/j.issn.1007-2802.2005.01.001
      [50] 夏群科, 陈道公, Rossman, G. R. , 2000. 高压超高压变质流体的一种重要载体: 名义上的无水矿物. 地质论评, 46: 461-465. doi: 10.3321/j.issn:0371-5736.2000.05.003
      [51] 章军锋, 金振民, GreenⅡ, H. W. , 2000. 大陆深俯冲带中的水: 来自大别山超高压榴辉岩的证据. 科学通报, 45: 1889-1894. doi: 10.3321/j.issn:0023-074X.2000.17.018
      [52] 章军锋, 金振民, GreenⅡ, H. W. , 2005. 结构水引起的榴辉岩变形组构和变形机制. 科学通报, 50(6): 559-564. doi: 10.3321/j.issn:0023-074X.2005.06.010
    • 加载中
    图(5) / 表(5)
    计量
    • 文章访问数:  4053
    • HTML全文浏览量:  147
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2005-07-15
    • 刊出日期:  2005-11-25

    目录

      /

      返回文章
      返回