Petrochemistry, Chronology and Tectonic Setting of Strong Peraluminous Anatectic Oanitoids in Yunkai Orogenic Belt, Western Guangdong Province, China
-
摘要: 云开造山带条带—眼球状(环斑)深熔花岗岩(含紫苏花岗岩)地球化学和年代学的研究表明, 绝大多数花岗岩的A/CNK > 1.1, CaO/Na2O=0.62-1.61(平均0.94, 大于0.3), Al2O3/TiO=16.6-60.6(平均23.68), 高场强元素Ta、Nb、Zr亏损, 具大陆边缘俯冲-碰撞造山带后碰撞构造环境强过铝(SP)高钾钙碱性-钙碱性花岗岩的特征, 紫苏花岗岩和片麻状含榴黑云二长花岗岩Al2O3/TiO(平均17.82)明显低于条带-眼球状(环斑)黑云二长花岗岩Al2O3/TiO(平均29.55), 显示其形成温度更高, 并具A型花岗岩的演化特征.而且从高钾钙碱性条带-眼球状(环斑)黑云二长花岗岩到钙碱性紫苏花岗岩、片麻状含榴黑云二长花岗岩, 形成时代由(465±10)Ma、(467±10)Ma变为(435±11)Ma、(413±8)Ma, 表明扬子板块与华夏板块在加里东期发生了洋—陆俯冲—碰撞造山和后碰撞的伸展—拆沉—底侵岩浆岩作用, 并且后期又经历了海西—印支期挤压抬升和伸展揭顶作用的改造, 这也为华南存在加里东期扬子板块向华夏板块的洋-陆俯冲-碰撞造山提供了重要证据.
-
关键词:
- 云开造山带 /
- 加里东期 /
- 强过铝深熔花岗岩 /
- 后碰撞构造环境 /
- 伸展-拆沉-底侵作用
Abstract: There are different theories about the genesis and age of banded-augen (rapakivi) anatectic granitoids (charnock-ite), which outcrop extensively in Yunkai region, western Guangdong Province. Their petrochemistry, chronology, defor-mational and metamorphic structures were studied. The petrochemical features of most granitoids are: A/CNK > 1. 1, Cao/Na2O=0. 62 - 1. 61 (average 0. 94, > 0.3), Al2O3/TiO=16.6-60.6 (average 23. 68), loss high field strong elements Ta、Nb、Zr, strong peraluminous high-K calc-alkaline and calc-alkaline granitoids in a post-collisional tectonic enviroment of sub-duction-collision orogenic belt in an active-continental margin. The temperatures of charnockite and gneissic garnet-bearing biotite monzonitic granite are obviously higher than that of banded-augen (rapakivi) biotite monzonitic granite, and charnockite and gneissic garnet-bearing biotite monzonitic granite with the evolutional characterics of A-type granites. From banded-granite, augen (rapakivi) biotite monzonitic granite to charnockite and gneissic garnet-bearing biotite monzonitic granite, the forming ages are (465±10)Ma, (467±10)Ma, (435±11)Ma and (413±8)Ma respectively, and become younger. These results show that there were oceanic-continental subduction-collision and post-collisional extension-delamination-underplating between the Yangtze and Cathaysia plates during the Caledonian, and they experienced compressional uplift and extensional exhumation during the Indosinian. It provides important evidence of the oceanic-continental subduction-collision of the Yangtze plate downward to the Cathaysia plate during the Caledonian in South China. -
图 2 花岗岩K2O-SO2判别图解(Le Maitre et al., 1989; Rickwood, 1989)
○.紫苏花岗岩; □.眼球状黑云二长花岗岩; △.环斑黑云二长花岗岩; ◇.片麻状含榴黑云二长花岗岩
Fig. 2. K2O vs.SiO2 discriminant diagrams for the granitoids
图 3 花岗岩Rb-(Y+Nb)判别图解和Rb-(Yb+Ta)判别图解(Pearce et al., 1984)
VAG.火山弧花岗岩; Syn-COLG.同碰撞花岗岩; WPG.板内花岗岩; ORG.洋脊花岗岩; 其余图例同图 2
Fig. 3. Rb-(Y+Nb) and Rb-(Yb+Ta) tectonic discriminant diagrams for the granitoids
图 4 花岗岩Hf-Rb-Ta判别图解(Harris et al., 1986; 图例同图 2)
Fig. 4. Hf-Rb-Ta tectonic discriminant diagrams for the granitoids
表 1 云开地区花岗岩主量和微量元素地球化学分析数据
Table 1. Major (%) and trace(μg·g-1) element analyses of the granitoids from the Yunkai area
表 2 云开地区花岗岩锆石SHRIMP U-Pb同位素分析数据
Table 2. SHRIMP U-Pb data of zircons of the granitoids from the Yunkai area
-
Barbarin, B., 1999. A review of the relationships between granitoid types, origins and their geodynamic environments. Lithos, 46: 605-626. doi: 10.1016/S0024-4937(98)00085-1 Condie, K. C., 1982. Plate tectonic and crustal evolution. Per-garnon Press, New York, 310. Dikinson, W. R, 1975. Potash-depth (K-h) relation in continental margin and intra-oceanic magmatic arcs. Geoiogy, (3): 53-56. Eby, G. N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20 (7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 Ferre, E. C., Leake, B. E., 2001. Geodynamic significance of early orogenic high-K crustal and mantle melts: Example of the Corsica Batholith. Lithos, 59: 47-67. doi: 10.1016/S0024-4937(01)00060-3 Gao, S., Jin, Z. M., 1997. Delamination and its geodynamical significance for the crust-mantle evolution. Geological Science and Technology Information, 16(1): 1 - 9 (in Chinese with English abstract). Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geo-chemical characteristics of collision-zone magatisra In: Coward, M. P., Ries, A. C., eds., Collision tectonics. Geol. Soc. Publ., 19: 67-81. Henderson, P., Pankhurst, R. J., 1984. Analytica chemistry. In: Henderson, P., ed., Rare earth element geochemistry. Elsevier Science Publishers, Amsterdam, 467-499. Jin, Z. M., Gao, S., 1996. Underplating and its geodynamical significances for the evolution of crust-mantle boundary. Geological Science and Technology Information, 15 (2): 1-7 (in Chinese with English abstract). Kay, R. W., Kay, S. M, 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177-189. doi: 10.1016/0040-1951(93)90295-U Kay, S. M., 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. J. Geophys. Res., 99: 24323-24339. doi: 10.1029/94JB00896 King, P. L., White, H. J. K., Chappell, B, W., et al., 1997. Characterization and origin of aluminons A-type gran- ites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38: 371-391. doi: 10.1093/petroj/38.3.371 Landenberger, B. . Collins, W. J., 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelumdi complex, eastern Australia. Journal of Petrology, 37: 145-170. doi: 10.1093/petrology/37.1.145 Le Maitre, R W., Bateman, P., Dudek, A., et al., 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford. Liegeois, J. P., 1998. Contrasting orgins of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids, the use of sliding normalization. Lithos, 45: 1-28. doi: 10.1016/S0024-4937(98)00023-1 Lin, Q. H., Li, L. Y., Liang, M. G., 1990. The origin of granitoids in Heshui and Sihe, western Guangdong. Regional Geology of China, 9(20): 173-180 (in Chinese with English abstract). Lu, Y. F., 2004. GeoKit-A geochemical toolkit for microsoft excel. Geochimica, 33(5): 459-464 (in Chinese with English abstract). Ludwig, K. R., 1999. Using Isoplot/EX, version 2: A geo-chronological toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 1-47. Middlemost, E. A. K., 1989. Iron oxidation ratios, norms and the classfication of volcanic rocks. Chem. Geo., 77: 19-26. doi: 10.1016/0009-2541(89)90011-9 Mo, Z. S., Ye, B. D., Pan, W. Z., et al., 1980. The geology of granitoids in Nanling. Geological Publishing House, Beijing-66 (in Chinese). Nedelec, A., Stephens, W. E., Fallicu. A. E., 1995. The Pan-African stratoid granites of Madagascar: Alkaline mag-matism in a post-collisional extensional setting. Journal of Petrology, 36: 1367-1391. doi: 10.1093/petrology/36.5.1367 Patino Douce, A. E., Beard, J. S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 k-bar. J. Petrol., 36: 707-738. Patino Douce, A. E., Johnston, A. D., 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol., 107: 202-218. doi: 10.1007/BF00310707 Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25: 956-983. doi: 10.1093/petrology/25.4.956 Peng, S. B., Peng, a M., Shao, J. G., 1995. Petrofabric features as evidence of structural evolution of the Yunkai area. Guangdong Geology, 10(2): 25-33 (in Chinese with English abstract). Peng, S. B., Zhang, Y. M., Zhan, M. G., et al., 2000. Dating of Sm-Nd, Rb-Sr isotopic system and its dynamic significance for the Proterozoic augen granite in Yunkai area. Acta Petrologica Sinica, 16 (1): 99-105 (in Chinese with English abstract). Peng, S. M., Wu, G. Y., Zhou, G. Q., et al., 1995. Tectonic euolution of Yunkai massif and its shearing anatectic origin of gneissic granitic rocks. China University of Geosciences Press, Wuhan, 43-147 (in Chinese with English abstract). Rajesh, H. M., 2000. Characterization and origin of a compo-sitionally zoned aluminous A-type granite from South India. Geol. Mag., 137(3): 291-318. doi: 10.1017/S001675680000399X Rickwood, P. C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263. doi: 10.1016/0024-4937(89)90028-5 Shao, J. G., Wu, G. Y., Peng, S. M., et al., 1996. Micro-area 40Ar/39Ar dating of Dongzhen granitic body in Guangdong and its significance. Guangdong Geology, 11(3): 51 - 56 (in Chinese with English abstract). Skjerlie, K. P. Johnston, A. D., 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol., 37: 661-691. doi: 10.1093/petrology/37.3.661 Sylvester, P. J., 1998. Post-collision strongly peraluminous granites. Lithos, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3 Tesfaye, K., Christian, K., 2003. Petrogenessis of A-type granitoids from the Wallagga area, western Ethiopia: Constraints from mineralogy, bullk-rock chemistry, Nd and Sr isotopic compositions. Precambrian Research, 121: 1-24. doi: 10.1016/S0301-9268(02)00198-5 Whalen, T. B., Currie, K. L., Chappelt, R W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95: 407-419. Xiao, Q. H., Deng, J. F., Ma, D. Q., et al., 2002. The ways of investigation of granitoids. Geological Publishing House, Beijing, 12-50 (in Chinese). Ye, B. D. 1989. Isotopic age data from Yunkai area of Guangdong and Guangxi provinces and their geologic implications. Guangdong Geology, 4 (3): 39-56 (in Chinese with English abstract). Yin, H. F., Wu, S. R, Du, Y. S., et al., 1999. South China defined as part of Tethyan archipelagic ocean system. Earth Science-Journal of China University of Geosciences, 24 (1): 1-12 (in Chinese with English abstract). Zhong, Z. Q., Zhang, H. F., Suo, S. T., et al., 1999. Partial melting in exhumation of ultrahigh pressure metamor-phic rocks, Dabieshan mountains, China. Earth Science-Journal of China University of Geosciences, 24 (4): 393-399 (in Chinese with English abstract). Zhou, H. W., You, Z. D., Zhong, Z. Q., et al., 1994. Characteristics of zircons in orbicular gneissic biotite-granite from Yunkai uplifted area. Earth Science-Journal of China University of Geosciences, 19(4): 427-432. 高山, 金振民, 1997. 拆沉作用(delamination)及其壳幔演化动力学意义. 地质科技情报, 16(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.000.htm 金振民, 高山, 1996. 底侵作用(underplating)及其壳幔演化动力学意义, 地质科技情报, 15(2): 1-7. 林庆华, 李立源, 梁明国, 1990. 粤西合水、思贺地区花岗质岩石的成因. 中国区域地质, 9(20): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199002008.htm 路远发, 2004. GeoKit: 一个用VAB构建的地球化学工具软件包. 地球化学, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 莫柱荪, 叶伯丹, 潘维组, 等, 1980. 南岭花岗岩地质学. 北京: 地质出版社, 44-66. 彭少梅, 伍广宇, 周国强, 等, 1996. 云开地区片麻状花岗岩形成的构造-深熔机理. 武汉: 中国地质大学出版社, 43 -147. 彭松柏, 彭少梅, 邵建国, 1995. 云开地区构造演化的岩石组构特征. 广东地质, 10(2): 25-33. 彭松柏, 张业明, 战明国, 等, 2000. 粤西云开元古宙眼球状花岗岩Sm-Nd、Pb-Pb和Rb-Sr同位素定年及其动力学意义. 岩石学报, 16(1): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001010.htm 邵建国, 伍广宇, 彭少梅, 等, 1996. 广东东镇岩体微区40Ar/39Ar年龄及其意义. 广东地质, 11(3): 51-56. 肖庆辉, 邓晋福, 马大铨, 等, 2002. 花岗岩研究思维与方法. 北京: 地质出版社, 12-50. 叶伯丹, 1989. 两广云开地区同位素地质年龄数据及其地质意义. 广东地质, 4(3): 39-56. 殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学——中国地质大学学报, 24(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm 钟增球, 张宏飞, 索书田, 等, 1999. 大别山高压折返过程中的部分熔融作用. 地球科学——中国地质大学学报, 24 (4): 393-399. 周汉文, 游振东, 钟增球, 等, 1994. 云开隆起区钾长球斑片麻状黑云母花岗岩锆石特征研究. 地球科学——中国地质大学学报, 10(4): 427-432. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199404005.htm