• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    第一原理计算过渡金属掺杂尖晶石型LiMn 2O4的电子结构

    宁连才 吴金平 周成刚 姚淑娟 程寒松

    宁连才, 吴金平, 周成刚, 姚淑娟, 程寒松, 2006. 第一原理计算过渡金属掺杂尖晶石型LiMn 2O4的电子结构. 地球科学, 31(3): 317-320.
    引用本文: 宁连才, 吴金平, 周成刚, 姚淑娟, 程寒松, 2006. 第一原理计算过渡金属掺杂尖晶石型LiMn 2O4的电子结构. 地球科学, 31(3): 317-320.
    NING Lian-cai, WU Jin-ping, ZHOU Cheng-gang, YAO Shu-juan, CHENG Han-song, 2006. First Principles Calculation of Electronic Structure of Spinel Manganese Oxide Doping with Transition Metal. Earth Science, 31(3): 317-320.
    Citation: NING Lian-cai, WU Jin-ping, ZHOU Cheng-gang, YAO Shu-juan, CHENG Han-song, 2006. First Principles Calculation of Electronic Structure of Spinel Manganese Oxide Doping with Transition Metal. Earth Science, 31(3): 317-320.

    第一原理计算过渡金属掺杂尖晶石型LiMn 2O4的电子结构

    基金项目: 

    中国地质大学优秀青年教师资助计划 cugQnl0519

    详细信息
      作者简介:

      宁连才(1980-), 男, 硕士研究生, 主要从事锂离子电池材料的理论计算与实验研究工作. E-mail: nlcaiwm@126.com

    • 中图分类号: TM912

    First Principles Calculation of Electronic Structure of Spinel Manganese Oxide Doping with Transition Metal

    • 摘要: 尽管对过渡金属掺杂锰酸锂后放电平台的升高现象有众多实验研究, 但对其机理的研究却鲜见报道.采用第一原理的密度泛函理论, 计算了过渡金属M(M=Ti、Cr、Fe、Co、Ni、Cu、Zn)掺杂尖晶石型LiMn2O4的电子结构, 并以此分析放电平台的升高机理.电子态密度分析发现由于M-3d能带的诱导作用, 出现了新的O-2p能带, 而锂脱出时获得的电子, 主要是由费米能级附近O-2p能带提供的.当过渡金属M由Ti变化到Zn时, M-3d能带逐渐向低能量的方向移动, 新的O-2p能带出现的位置也随之下移, 当Li脱出时, 需要更多的能量才能从低能量的O-2p能带上获得电子, 因而体系能够获得较高的嵌入电压.

       

    • 图  1  尖晶石型LiMn2O4的晶胞结构模型

      Fig.  1.  Cell configuration of spinel manganese oxide

      图  2  LiM0.125Mn1.875O4(M=Ti、Cr、Fe、Co、Ni、Cu、Zn)中Mn-3d、M-3d和O-2p的分态密度(PDOS)

      Fig.  2.  Partial density of states of Mn-3d band, M-3d band and O-2p band in LiM0.125Mn1.875O4(M=Ti, Cr, Fe, Co, Ni, Cu, Zn)

      图  3  局部放大的LiM0.125Mn1.875O4(M=Ti、Cr、Fe、Co、Ni、Cu、Zn)中Mn-3d、M-3d和O-2p的分态密度(PDOS)

      Fig.  3.  Enlarged partial density of states of Mn-3d band, M-3d band and O-2p band in LiM0.125Mn1.875O4(M=Ti, Cr, Fe, Co, Ni, Cu, Zn)

    • [1] Artacho, E., Sánchez-Portal, D., Ordejón, P., et al., 1999. Linear-scaling ab-initio calculations for large and complex systems. Phys. Status Solidi. B, 215: 809-817. doi: 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0
      [2] Aydinol, M.K., Kohn, A.F., Ceder, G., et al., 1997. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B, 56: 1354-1365. doi: 10.1103/PhysRevB.56.1354
      [3] Ceder, G., Aydinol, M.K., Kohn, A.F., 1997. Application of first-principles calculations to the design of rechargeable Li-batteries. Comput. Mater. Sci., 8: 161-169. doi: 10.1016/S0927-0256(97)00029-3
      [4] He, X.M., Li, J.J., Cai, Y., et al., 2005. Preparation of codoped spherical spinel LiMn2O4cathode materials for Liion batteries. Journal of Power Sources, 150: 216-222. doi: 10.1016/j.jpowsour.2005.02.029
      [5] Liu, H.X., Zhou, Z.P., Zhao, S.X., 2001. The microwave synthesis of LiMn2O4 electron materials. Journal of Physical Chemistry, 17: 702-707(in Chinese with English abstract).
      [6] Markovskya, B., Talyossef, Y., Salitra, G., et al., 2004. Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries. Electrochemistry Communications, 6: 821-826. doi: 10.1016/j.elecom.2004.06.005
      [7] Ning, L.C., Wu, J.P., Zhou, C.G., et al., 2006. On the influence of sequential lithium insertions on the physical properties of spinel manganese oxide. International Journal of Quantum Chemistry(in Press).
      [8] Park, S.H., Sun, Y.K., 2004. Synthesis and electrochemical properties of 5 V spinel LiNi0.5Mn1.5O4cathode materials prepared by ultrasonic spray pyrolysis method. Electrochimica Acta, 50: 429-432.
      [9] Shi, S. Q., Ouyang, C. Y., Wang, D.S., et al., 2003. The effect of cation doping on spinel LiMn2O4: A firstprinciples investigation. Solid State Communications, 126: 531-534. doi: 10.1016/S0038-1098(03)00234-5
      [10] Song, G.M., Li, W.J., Zhou, Y., 2004. Synthesis of Mg-doped LiMn2O4powders for lithium-ion batteries by rotary heating. Materials Chemistry and Physics, 87: 162-167. doi: 10.1016/j.matchemphys.2004.05.023
      [11] Tasnádi, F., Nagy, Á., 2002. Local self-interaction-free approximate exchange-correlation potentials in the variational density functional theory for individual excited states. Chemical Physics Letters, 366: 496-503. doi: 10.1016/S0009-2614(02)01612-3
      [12] Xia, Y. Y., Yoshio, M., 1997. Studies on Li-Mn-O spinel system(obtained from melt-impregnation method)as a cathode for 4 V lithium batteries, Part Ⅳ. High and low temperature performance of LiMn2O4. Journal of Power Sources, 66: 129-133.
      [13] 刘韩星, 周振平, 赵世玺, 2001. LiMn2O4体系电极材料的微波合成. 物理化学学报, 17: 702-707. doi: 10.3866/PKU.WHXB20010807
    • 加载中
    图(3)
    计量
    • 文章访问数:  3272
    • HTML全文浏览量:  113
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 刊出日期:  2006-05-25

    目录

      /

      返回文章
      返回