• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    铜在水蒸气相中溶解的初步实验

    尚林波 胡瑞忠 樊文苓

    尚林波, 胡瑞忠, 樊文苓, 2006. 铜在水蒸气相中溶解的初步实验. 地球科学, 31(3): 321-325.
    引用本文: 尚林波, 胡瑞忠, 樊文苓, 2006. 铜在水蒸气相中溶解的初步实验. 地球科学, 31(3): 321-325.
    SHANG Lin-bo, HU Rui-zhong, FAN Wen-ling, 2006. A Preliminary Study of the Solubility of Copper in Water Vapor. Earth Science, 31(3): 321-325.
    Citation: SHANG Lin-bo, HU Rui-zhong, FAN Wen-ling, 2006. A Preliminary Study of the Solubility of Copper in Water Vapor. Earth Science, 31(3): 321-325.

    铜在水蒸气相中溶解的初步实验

    基金项目: 

    中国科学院重要方向项目 KZCX-3SW-125

    国家自然科学基金项目 40503007

    国家自然科学基金项目 40373020

    详细信息
      作者简介:

      尚林波(1976-), 女, 助理研究员, 主要从事实验地球化学研究工作. E-mail: sss_2000@sina.com

    • 中图分类号: P599

    A Preliminary Study of the Solubility of Copper in Water Vapor

    • 摘要: 近年来地质证据和少量的实验研究证实, 相当量的铜可以在气相中迁移, 人们认识到铜在气相中迁移是一种重要的地球化学过程, 但目前关于铜在气相中溶解反应机理的研究还相当缺乏.本文通过溶解度法, 在310~350℃, 压力为4.2~10MPa的条件范围内, 实验研究了铜在不饱和水蒸气相中的溶解度.结果表明: 水蒸气的存在大大增强了铜在气相中的溶解度; 恒定温度下, 铜在气相中的溶解度随着水蒸气压的增加而增大; 气相中铜可能以水合物的形式存在, 铜在气相中的溶解可由以下反应表述: CuClmsolid+nH2O gas=CuClm·(H2O)ngas(m=1, 2), 其中水合数随着温度升高而下降, 温度为310℃水合数n为~6, 330℃为~5, 350℃为~4.研究结果明确显示, 气体溶剂H2O与铜之间的反应可大大增强铜在气相中的溶解和迁移能力.

       

    • 图  1  实验中所用的钛高压釜

      Fig.  1.  A titanium autoclave of the type used in this study

      图  2  温度为310℃、压力为4.84 MPa条件下, 铜在气相中的溶解度与时间的关系

      Fig.  2.  Solubility of copper in the vapor phase as a function of time, at 310℃, pH2O =4.84 MPa

      图  3  在310℃、330℃、350℃条件下log XCu对log fH2O的关系

      Fig.  3.  Plots of log XCu versus log fH2O at 310℃, 330℃, 350℃

      表  1  铜在气相中的溶解度和摩尔分数

      Table  1.   Solubility and mole fraction of copper in the vapor phase

    • [1] Archibald, S.M., Migdisov, A.A., Williams-Jones, A. E., 2001. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 65(23): 4413-4423. doi: 10.1016/S0016-7037(01)00730-X
      [2] Archibald, S.M., Migdisov, A.A., Williams-Jones, A. E., 2002. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 66(9): 1611-1619. doi: 10.1016/S0016-7037(01)00867-5
      [3] Barnes, H.L., 1997. Geochemistry of hydrothermal ore deposits. 3rd edition. Jonh Wiley and Sons, New York.
      [4] Brewer, L., Lofgren, N., 1950. The thermodynamics of gaseous cuprous chloride, monomer and trimer. J. Am. Chem. Soc., 72: 3038-3045. doi: 10.1021/ja01163a066
      [5] Dienstbach, F., Emmenegger, F.P., Schlaepfer, C.W., 1977. Vaporization of copper(Ⅱ)chloride and the structure of vapor studied using UV/visible and Raman spectroscopy. Inst. Anorg. Anal. Chem. Helv. Chim. Acta, 60: 2460-2470. doi: 10.1002/hlca.19770600732
      [6] Gemmell, J. B., 1987. Geochemistry of metallic trace elements in fumarole condenstates from Nicaraguan and Costa Rican volcanoes. Journal of Volcanology and Geothermal Research, 33: 161-181. doi: 10.1016/0377-0273(87)90059-X
      [7] Heinrich, C.H., Ryan, C.G., Mernagh, T.P., et al., 1992. Segregation of ore metals between magmatic brine and vapor: A fluid inclusion study using PIXE microanalysis. Economic Geology, 87: 1566-1583. doi: 10.2113/gsecongeo.87.6.1566
      [8] Heinrich, C.A., Günther, D., Audétat, A., 1999. Metal fractionation between magmatic brine and vapor, determinded by microanalysis of fluid inclusions. Geology, 87: 755-758.
      [9] Kestin, J., Sengers, J. V., Kamgar-Parsi, B., et al., 1984. Thermophysical properties of fluid H2O. J. Phys. Chem. Re f. Data, 13: 175-183. doi: 10.1063/1.555707
      [10] Lowenstern, J. B., Mahood, G. A., Rivers, M. L., et al., 1991. Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252(7): 1405-1409.
      [11] Migdisov, A.A., Williams-Jones, A.E., Suleimenov, O.M., 1999. Solubility of chlorargyrite(AgCl) in the water vapor at elevated temperature and pressures. Geochimica et Cosmochimica Acta, 63(22): 3817-3827. doi: 10.1016/S0016-7037(99)00213-6
      [12] Peterson, D.E., 1973. Sublimation thermodynamics and kinetics of cuprous-chloride. Part Ⅰ : Vacuum balancetorsion experiments. PartⅡ : Mass-spectrometer experiments(Dissertation). University of Kansas, Kansas, 484.
      [13] Pokrovski, G.B., Zakirov, I.V., Roux, J., et al., 2002. Experimental study of arsenic speciation in vapor phase to 500℃ : Implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochimica et Cosmochimica Acta, 66(19): 3453 3480. doi: 10.1016/S0016-7037(02)00946-8
      [14] Seward, T.M., Henderson, C.M., Charnock, J.M., et al., 1996. An X-ray absorption(EXAFS) spectroscopic study of aquated Ag+ in hydrothermal solutions to 350℃. Geochim. Cosmochim. Acta, 60: 2273-2282. doi: 10.1016/0016-7037(96)00098-1
      [15] Sheller, B., 1976. A transpiration-mass spectrometric technique for the determination of the thermodynamic properties of chloride vapor transport reactions(Dissertation). Colorado School of Mines, Golden, Colorado, 197.
      [16] Taran, Y. A., Bernard, A., Gavilanes, J. C., et al., 2000. Native gold in mineral precipitates from high temperature volcanic gases of Colima volcano, Mexico. Applied Geochemistry, 15: 337-346. doi: 10.1016/S0883-2927(99)00052-9
      [17] Ulrich, T., Günther, D., Heinrich, C.A., 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399(17): 676-679.
      [18] Williams-Jones, A.E., Migdisov, A.A., Archibald, A.M., et al., 2002. Vapor-transport of ore metals. Water-Rock Interactions, Ore Deposits, and Envrionmental Geochemistry, 7: 279-305.
      [19] Xiao, Z., 1999. Experimental and theoretical studies of the solubility of copper in liquid and vapor in the system NaCl-HCl-H2O (Dissertation). Mcgill University, Montreal.
      [20] Zakaznova-Iakovleva, V. P., Migdisov, A. A., Suleimenov, O.M., et al., 2001. An experimental study of stibnite solubility in gaesous hydrogen sulphside from 200 to 320℃. Geochimica et Cosmochimica Acta, 65(2): 289 298. doi: 10.1016/S0016-7037(00)00523-8
      [21] Zhang, R.H., Hu, S., 2002. A case study of the influx of upper mantle fluids into the crust. Journal of Volcanology and Geothermal Research, 118: 319-338. doi: 10.1016/S0377-0273(02)00300-1
    • 加载中
    图(3) / 表(1)
    计量
    • 文章访问数:  3432
    • HTML全文浏览量:  130
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 刊出日期:  2006-05-25

    目录

      /

      返回文章
      返回