• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法

    成秋明

    成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学, 31(3): 337-348.
    引用本文: 成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学, 31(3): 337-348.
    CHENG Qiu-ming, 2006. Singularity-Generalized Self-Similarity-Fractal Spectrum (3S) Models. Earth Science, 31(3): 337-348.
    Citation: CHENG Qiu-ming, 2006. Singularity-Generalized Self-Similarity-Fractal Spectrum (3S) Models. Earth Science, 31(3): 337-348.

    非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法

    基金项目: 

    国家杰出青年科学基金项目 40525009

    详细信息
      作者简介:

      成秋明(1960-), 男, 教授, 中国地质大学教育部长江学者特聘教授, 主要从事矿产普查与勘探、数学地质、地理信息系统、矿产资源评价的教学和研究. E-mail:qiuming@yorku.ca

    • 中图分类号: P628

    Singularity-Generalized Self-Similarity-Fractal Spectrum (3S) Models

    • 摘要: 介绍了“奇异性-广义自相似性-分形谱系”(“3S”: Singularity-generalized self-Similarity-fractal Spectrum)为核心的多重分形现代成矿预测理论与模型(Multifractal Mineralization Prediction Theory and Models)的基本内容和前沿研究方向.讨论了作为非线性、复杂性理论的重要领域之一, 多重分形理论所提供的“奇异性-广义自相似性-分形谱系”等概念和相关的模型.这些新概念和模型不仅能够合理地描述成矿系统、成矿过程、成矿富集规律、矿产资源时空分布, 还提供了定量模拟和识别成矿异常(地质、地球物理、地球化学、遥感异常)的有效模型和实用方法.将多重分形原理与成矿过程、矿产资源分布规律、矿产资源信息获取研究相结合, 可形成具有良好应用前景的现代成矿预测理论与模型.采用该多重分形矿产资源预测理论和在此基础上所开发的专用地学非线性空间信息GeoDASGIS技术, 对国内外多个金属成矿区带进行了矿产资源勘查与评价, 均取得了较理想的预测效果, 表明对开展矿产资源勘查和评价是有效和可行的.

       

    • 图  1  多重分形“3S”非线性矿产资源定量预测理论体系框架

      Fig.  1.  Framework of the multifractal"3S''non-linear mineral resource assessment theory

    • Agterberg, F.P., 1995. Power-law versus lognormal model in mineral exploration. In: Mitri, H.S., ed., Computer applications in the mineral industry. Proceedings of the Third Canadian Conference on Computer Applications in the Mineral Industry, 17-26.
      Agterberg, F.P., 2001. Multifractal simulation of geochemical map patterns. Earth Science-Journal of China University of Geosciences, 26(2): 142-151(in Chinese with English abstract).
      Bak, P., 1996. How nature works. Springer-Verlag, New York.
      Bonham-Carter, G.F., 1994. Geographic information system for geosciences: Modelling with GIS. Pergamon Press, Oxford, 1-398.
      Chacron, M., I。'Heureux, I., 1999. A new model of periodic precipitation incorporating nucleation, growth and ripening. Physics Letters A, 263: 70-77. doi: 10.1016/S0375-9601(99)00709-4
      Chen, Z., Cheng, Q, Chen, J., 2005. Significance of fractal measure in local singularity analysis of multifractal model. In: Cheng, Q M, 130nham-Carter, G., eds., Proceedings of IAMG'05: GIS and Spatial Analysis, 1: 475 -480.
      Cheng, Q M, 1994. Multifractal modeling and spatial analysis with GIS: Gold potential estimation in the MitchellSulphurets area, northwestern British Columbia(Dissertation). Univ. Ottawa, Ottawa, 268.
      Cheng, Q M., Agterberg, F.P., 1996. Comparison between two types of multifractal modeling. Mathematical Geology, 28(8): 1001-1016. doi: 10.1007/BF02068586
      Cheng, Q M., Agterberg, F.P., Ballantyne, S.B., 1994a. The separation of geochemical anomalies from background by fractal methods. Journal of Exploration Geochemistry, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      Cheng, Q M., Agterberg, F.P., Bonham-Carter, G.F., 1994b. Fractal pattern integration for mineral potential mapping. Proceedings IAMG'94, MontTremblant, Quebec., Oct., 74-80.
      Cheng, Q M, Xu, Y., Grunsky, E, 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation-In: Lippard, J.L., Naess, A, Sinding-Larsen, R., eds., Proc. Int. Assoc. Mathematical Geology Meeting, Trondheim, Norway, I: 87-92.
      Cheng, Q M., 1995. The perimeter-area fractal model and its application to geology. Mathematical Geology, 27(1): 69-82. doi: 10.1007/BF02083568
      Cheng, Q M., 1997a. Fractal/multifractal modeling and spatial analysis. Keynote lecture in Proceedings of the International Association for Mathematical Geology Conference, 1: 57-72.
      Cheng, Q M., 1997b. Discrete multifractals. Journal of Mathematical Geology, 29(2): 245-266. doi: 10.1007/BF02769631
      Cheng, Q M., 1999a. Spatial and scaling modeling for geo chemieal anomaly separation. Journal of Exploration Geochemistry, 65: 175-194. doi: 10.1016/S0375-6742(99)00028-X
      Cheng, Q M., 1999b. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961.
      Cheng, Q M., 1999c. The gliding box method for multifractal modeling. Computers & Geosciences, 25(9): 1073-1079.
      Cheng, Q M., 2000. GeoData analysis system(GeoDAS)for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York University, Nov. 1 to 3, 2000, 204. Available at www. gisworld. org/geodas.
      Cheng, Q M, 2003a. Non-linear mineralization models and information processing methods for prediction of unconventional mineral resources. Earth Science-Journal of China University of Geosciences, 28(4): 445-454(in Chinese with English abstract).
      Cheng, Q M., 2003b. Fractal and multifraetal modeling of hydrothermal mineral deposit spectrum: Application to gold deposits in the Abitibi area, Canada. Journal of China University of Geosciences, 14(3): 199-206.
      Cheng, Q M, 2004a. Quantifying generalized self-similarity analysis of spatial patterns for mineral resource assessments. Earth Science-Journal of China University of Geosciences, 29(6): 733-744(in Chinese with English abstract).
      Cheng, Q.M., 2004b. A new model for quantifying anisotropic scale invariance and decomposing of complex patterns. Mathematical Geology, 36(3): 345-360.
      Cheng, Q M., 2005a. Multifractal distribution of Eigenvalues and Eigenvectors from 2D multiplicative cascade multifractal fields. Mathematical Geology, 37(8): 915-927. doi: 10.1007/s11004-005-9223-1
      Cheng, Q M, 2005b. A new model for incorporating spatial association and singularity in interpolation of exploratory data. In: Leuangthong, O.D., Clayton, v., eds., Geostatistics Banff 2004. Quantitative Geology and Geostatistics, 14(2): 1017-1025(Springer).
      Cheng, Q M, 2005c. Muhiplicative cascade mineralization processes and singular distribution of mineral deposit associated geochemical anomalies. In: Cheng, Q M, Bonham-Carter, G., eds., Proceedings of Annual Conference of the|nternational Association for Mathematical Geology(IAMG'05), GIS and Spatial Analysis, l: 297-302.
      Cheng, Q M, 2006. GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris, J., ed., GIS applications in earth sciences. Geological Association of Canada Special Book, 289-300.
      Falconer, K., 2004. Fractals and chaos: The Mandelbrot set and beyond. Nature, 430(6995): 18-20.
      Feder, J., 1988. Fractals. Plenum Press, New York, 283.
      Fowler, A D., 1994. The role of geopressure zones in the formation of hydrothermal Pb-Zn Mississippi Valleytype mineralization in sedimantary basins. In: Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geol. Soci. Spec. Pub., 78: 293-300.
      Fowler, A D., I. 'Heureux, I., 1996. Self-organized banded sphalerite and branching galena in the Pine Point ore deposit, Northwest Territories. Canadian Mineralogist, 34(Part 6): 1211-1222.
      Giles, J., 2004. Benoit Mandelbrot: Father of fractals. Nature, 432(7015): 266-267. doi: 10.1038/432266a
      Herzfeld, U.C., 1999. Geostatistical interpolation and classification of remote sensing data from ice surfaces. International Journal of Remote Sensing, 20(2): 307-327. doi: 10.1080/014311699213460
      L'Heureux, I., Fowler, A D., 2000. A simple model of flow pattern in overpressured sedimentary basins with heat transport and fracturing. J. Geophys. Res., 105: 23741—23752. doi: 10.1029/2000JB900198
      Li, Q.M., Cheng, Q M, 2004. Fractal singular-value(Eginvalue)decomposition method for geophysical and geochemical anomaly reconstruction. Earth Science-Jourhal of China University of Geosciences, 29(1): 109-118(in Chinese with English abstract).
      Li, Q.M., Cheng, Q M, 2006. Multifractal modeling in Walsh domain and signal processing in GIS environment. Chinese Journal of Geophysics(in Chinese with English abstract)(in Press).
      Lovejoy, S. 1982. Area-perimeter relation for rain and cloud areas. Science, 216(4542): 185-187. doi: 10.1126/science.216.4542.185
      Lovejoy, S., Schertzer, D., Ladoy, P., 1987. Fractal characterization of inhomogeneous geophysical measuring networks. Nature, 319(6048): 43-44.
      Mandelbrot. B B, 1972. Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C, eds., Statistical models and turbulence, lecture notes in physics, 12. Springer, New York, 333-351.
      Mandelbrot, B. B, 1982. The fractal geometry of nature. W. H. Freeman, New York, 468.
      Ortoleva, P., 1994. Geochemical self-organization. Oxford University Press. New York.
      Ottino, J.M., Muzzio, F.J., Tjiahjadi, M, et al., 1992. Chaos, symmetry, and self-similarity-exploiting order and disorder in mixing processes. Science: 257(5071): 754-760. doi: 10.1126/science.257.5071.754
      Schertzer, D., Lovejoy, S., 1991. Nonlinear variability in geophysics. Kluwer Academic, Dordrecht, The Netherlands, 318.
      Shore, M., Fowler, A.D., 1999. The origin of spinifex texture in komatites. Nature, 397(6721): 691-694. doi: 10.1038/17794
      Turcotte, D. L, 2002. Fractals in petrology. Lithos, 65: 261-271. doi: 10.1016/S0024-4937(02)00194-9
      Wang, Z.J., Cheng, Q M, 2006. Fractal modelling of the microstructure property of quartz mylonite during deformation process. Mathematical Geology(in Press).
      Yu, C W., 1999. Chaos edge of large deposits and mineral districts. Earth Science Frontiers, 6(1): 85-102(in Chinese with English abstract).
      Yu, C.W., 2002. Complexity of geosystems: Basic issues of geological science(I). Earth Science-Journal of China University of Geosciences, 27(5): 509-519(in Chinese with English abstract).
      Zhang, Z., Mao, H., Cheng, Q M, 2001. Fractal geometry of element distribution on mineral surface. Mathematical Geology, 33(2): 217-228. doi: 10.1023/A:1007587318807
      Zhao, P.D., 1998. Geological anomaly theory and mineral deposits prediction: Advanced mineral resources assessment theory and methods. Geological Publishing House, Beijing(in Chinese).
      Zhao, P.D., 2004. Quantitative methods and application in geology. Higher Education Press, Beijing(in Chinese).
      Zhao, P.D., Chen, J.P., Zhang, S.T., 2003. Recent progress of"three components''mineral deposit prediction. Earth Science Frontiers, 10(2): 455-462(in Chinese with English abstract).
      Agterberg, F.P., 2001. 地球化学图纹理的多重分形模拟. 地球科学——中国地质大学学报, 26(2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102009.htm
      成秋明, 2003a. 非线性矿床模型与非常规矿产资源评价. 地球科学——中国地质大学学报, 28(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304015.htm
      成秋明, 2004a. 空间模式的广义自相似性分析和矿产资源评价. 地球科学——中国地质大学学报, 29(6): 733-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406012.htm
      李庆谋, 成秋明, 2004. 分形奇异(特征)值分解方法与地球物理和地球化学异常重建. 地球科学——中国地质大学学报, 29(1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401019.htm
      李庆谋, 成秋明, 2006. walsh列率域中多维分形模型与GIS环境下地球物理信号处理. 地球物理学报(出版中). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200706033.htm
      於崇文, 1999. 大型矿床和成矿区(带)在混沌边缘. 地学前缘, 6(1): 85-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY901.012.htm
      於崇文, 2002. 地质系统的复杂性——地质科学的基本问题(王). 地球科学——中国地质大学学报, 27(5): 509-519.
      赵鹏大, 1998. 地质异常理论与矿床预测: 现代矿产资源评价理论与方法. 北京: 地质出版社.
      赵鹏大, 2004. 定量地学方法及应用. 北京: 高等教育出版社.
      赵鹏大, 陈建平, 张寿庭, 2003. "三联式"成矿预测新进展. 地学前缘, 10(2): 455-462. doi: 10.3321/j.issn:1005-2321.2003.02.025
    • 加载中
    图(1)
    计量
    • 文章访问数:  4355
    • HTML全文浏览量:  805
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2006-03-08
    • 刊出日期:  2006-05-25

    目录

      /

      返回文章
      返回