Geothermal and Solar Energy Combined Power Generation System—An Environment Friendly System Insubject to Geographic Location
-
摘要: 为解决能源问题, 开发可再生能源, 利用闭式循环将地热系统和太阳能系统联合起来发电.发电系统可以避免因大规模开发利用地热水资源可能造成的地震、地面沉降、地热水资源衰减、地热水有害成分污染、热污染等环境问题, 也可以克服地热发电和太阳能发电受地理位置限制的缺点.地热系统地下部分由两垂深3~5 km的井在井底由一5~7 km的水平井连接而成, 水平井中流体温度可达150 ℃左右, 适合于ORC发电.太阳能系统采用槽式聚光镜集热, 集热流体可选水或油, 最高温度可达350 ℃以上.ORC一级循环工质为水, 二级循环工质为异丁烷; ORC发电效率, 白天最大为20%, 晚上最大为12%.系统采用化学储能, 储能密度为显热储能和潜热储能的10倍以上.钻井和完井、太阳能热能转换、载热流体、ORC和储能等技术的研究结果证明该系统是可行的.Abstract: The utilization of closed loop, which generates power by combining the geothermal system with solar energy system, is feasible to solve energetic problem and to exploit renewable energy. The power generation system can avoid such environmental problems as earthquake, heat pollution, ground sedimentation, decrease of geothermal water resources, toxicant pollution, caused by mass use of geothermal water resources. Moreover, the system is expected to be free of the limitation of the geographic location. The technology is to generate power by taking the advantage of the closed loop which combines the geothermal system with solar energy system. The geothermal system is suitable for ORC power generation since the vertical depth of the underground part is 3-5 km, horizontal distance is around 5-7 km, and the fluid temperature in the horizontal well comes to around 150 ℃. Trough paraboloid mirror is used in the solar energy system to collect heat in which either water or oil is feasible as heat collecting fluid, and it is possible for temperature to reach as high as or even higher than 350 ℃. Primary circulation media is water and the secondary one is isobutane. The maximal power generation productivity of ORC is 20% in the daytime and 12% at night. Chemical storage energy is adopted in the system which has a storage-density 10 times higher than the apparent-heat storage energy and the potential-heat one. The system is proved to be feasible after studying the relative technologies of drilling and completion, the transformation from solar energy to heat energy, heat-carrier fluid, ORC and storage energy.
-
Key words:
- solar energy /
- geothermal energy /
- closed loop /
- combined power generation
-
表 1 钻孔直径和所能钻达的最大水平位移的关系
Table 1. Relationship between the diameter of drilling hole and the maximal drilling horizontal distance
-
Azpiazu, M. N., Morquillas, J. M., Vazquez, A., 2003. Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle. Applied Thermal Engineering, 23: 733-741. doi: 10.1016/S1359-4311(03)00015-2 Farid, M. M., Khudhair, A. M., Razack, S. A. K., et al., 2004. A review on phase change energy storage: Materials and applications. Energy Conversion and Management, 45: 1597-1615. doi: 10.1016/j.enconman.2003.09.015 Ge, X. S., 1994. Progress of solar energy research and related problems for study. Science Foundation in China, (3): 189-192(in Chinese). Geng, L. P., 1998. Geographic distribution and application of geothermal energy in China. Geology and Prospecting, 34(1): 50-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT801.008.htm Kalo, S. A., 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30: 231-295. doi: 10.1016/j.pecs.2004.02.001 Lu, S. L., 2004. The world report of extended reach drilling. Ocean Oil, (9): 94(in Chinese). Santoyo, E., García, A., Morales, J. M., et al., 2001. Effective thermal conductivity of Mexican geothermal cementing systems in the temperature range from 28 ℃ to 200 ℃. Applied Thermal Engineering, 21(17): 1799-1812. doi: 10.1016/S1359-4311(01)00048-5 Schmid, S. P., 2004. Erhöhung des Energieertrages eines Untertägig Geschlossenen Geothermischen Wärmetauschers durch die Verwendung geeigneter wärmeleitender Zementrezepturen, TU Berlin, Berlin. Sen, Z., 2004. Solar energy in progress and future research trends. Progress in Energy and Combustion Science, 30: 367-416. doi: 10.1016/j.pecs.2004.02.004 Smith, D. K., 1990. Cementing. In: Henry, L., ed., Doherty memorial fund of AIME. New York. Trieb, F., Langnib, O., Klail, H. L., 1997. Solar electricity generation—A comparative view of technologies, costs and environmental impact. Solar Energy, 59: 89-99. doi: 10.1016/S0038-092X(97)80946-2 Xia, L. P., Huang, P., 1997. Conduct heat oil is one excellent intermediate heat transfer medium. Petro-Chemical Equipment Technology, 18(5): 23-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHSJ705.007.htm Zhao, Y., Zhao, H., 1998. Resource and utilization of solar energy in China. Economic Geography, 18(1): 56-61 (in Chinese with English abstract). Zheng, X. H., Wolff, H., Zheng, W. L., 2004. Closed loop geothermal system—One new system of geothermal power generation. Exploration Engineering (Drilling & Tunneling), (1): 63-64(in Chinese). 葛新石, 1994. 太阳能利用的研究与开发. 中国科学基金, (3): 189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199403011.htm 耿莉萍, 1998. 中国地热资源的地理分布与勘探. 地质与勘探, 34(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT801.008.htm 卢林松, 2004. 大位移井的世界纪录. 海洋石油, (9): 94. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200403029.htm 夏丽萍, 黄萍, 1997. 导热油是一种优良的中间传热介质. 石油化工设备技术, 18(5): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSJ705.007.htm 赵媛, 赵慧, 1998. 我国太阳能资源及其开发利用. 经济地理, 18(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL199801009.htm 郑秀华, Wolff, H., 郑伟龙, 2004. 地下闭式循环热交换系统—一种新型地热发电系统. 探矿工程(岩土钻掘工程), (1): 63-64. doi: 10.3969/j.issn.1672-7428.2004.01.021