A Method for Obtaining Shaliness Using Wiener Filtering Based on Logging Data Natural Gamma Ray
-
摘要: 泥质含量是定性、定量评价储层属性的一个重要参数.研究经济、适用、高精度的储层泥质含量求取方法, 对储层的评价、预测含油气远景和计算储层油气储量意义明确.提出了测井自然伽马求取泥质含量的新原理, 认为测井自然伽马信号是地层自然伽马真值通过一个系统的卷积滤波输出.利用测井自然伽马信号和提取的自然伽马真值子波, 采用维纳滤波法求取测井系统逆因子函数, 根据逆因子函数, 用自然伽马测井信号做卷积直接计算泥质含量.本研究在中国西北某油气勘探区有岩心分析资料的K13井进行了试验, 求取的泥质含量精度比测井常规解释方法大幅提高, 在同一勘探区K11、S44、S4等井试验性应用, 效果良好.Abstract: The research on approaches to calculate shaliness accurately and efficiently is of great significance for reservoir capacity estimation, as shaliness is an important parameter to evaluate the reservoir qualitatively and quantitatively.Considering logging data GR (natural gamma ray) is the measured output from its real value which passes through a convolution filter, this paper proposes a new approach to calculate the value of shaliness according to GR values directly.The inversion filter factors can be acquired from a certain sequence of the measured logging data GR and the real value of GR, by taking advantage of Wiener filtering.Then, shaliness can be expressed as a convolution between GR sequence and the inversion filter factors.Experiments on core-analysis-data supported oil well K13, Northwest China show that shaliness values obtained with the above method are much more accurate than those obtained with conventional methods.Its trial application in oil well K11, S44, S4 of the same exploration area has proved to be very effective.
-
Key words:
- natural gamma ray /
- shaliness /
- Wiener filter /
- inversion filter factors
-
表 1 维纳滤波计算的泥质含量Vsh与常规解释结果
Table 1. Results of obtained shaliness using Wiener filtering method and conventional explaining
-
Cheng, M., McNaughton, D., 1996. Productivity predictionfrom well logs in variable grain-size reservoirs. CSPG Reservoir, 23 (11): 7. Fang, Z. L., Wu, M. D., Feng, Q. N., 2005. Advances in welllogging. Oil Forum, (2): 32-35 (in Chinese). Hu, B., Rao, C. H., 2004. The application of increamental Wiener filters in image deconvolution of wavefront sensing. Acta Optica Sinica, 24 (10): 1305-1309 (inChinese with English abstract). Huang, K., Yang, X. H., Xu, Q. Z., et al., 1998. The relation among porosity, shaliness and P-and S-wave velocity of seismic wave. Xinjiang Petroleum Geology, 19 (6): 462-464, 525 (in Chinese with English abstract). Hunt, E., Pursell, D., 1997. Fundamentals of log analysis; Part7, Determining shaliness fromlogs. World Oil, 218 (3): 55-56, 58. Jiang, S., Cai, D. S., Zhu, X. M., et al., 2007. Mechanism of the pore evolution in Liaodong Bay area. Earth Science—Journal of China University of Geosciences, 32 (3): 366-372 (in Chinese with English abstract). Li, Z. B., 1995. Well drilling and physical geography exploration. Geological Publishing House, Beijing, 1-264 (inChinese). Ma, H. Y., Yin, C., Li, D. W., 2006. Deconvolution theoremandits application in seismic data processing. West-China Exploration Engineering, 18 (3): 91-92 (in Chinese). Mao, Z. Q., 2003. Controlling effects of poor permeable layers upon accumulation and distribution of hydrocarbon in inhomogeneous sandstone reservoir. Earth Science—Journal of China University of Geosciences, 28 (2): 196-200 (in Chinese with English abstract). Porsani, M. J., 1996. Fast algorithms to design discrete Wiener filters in lag and length coordinates. Geophysics, 61 (3): 882-890. doi: 10.1190/1.1444013 Shi, G., Yang, D. Q., 2001. The regression analysis study onvelocity and porosity, and clay content of rocks. Acta Scicentiarum Naturalium Universitatis Pekinensis, 37 (3): 379-384 (in Chinese with English abstract). Wang, L. J., 2004. Evaluation and prediction of gas reservoir productivity by the use of log data. Geological Scienceand Technology Information, 23 (3): 57-60 (in Chi-nese with English abstract). Xie, Y. F., Li, H. Q., Sun, Z. C., et al., 2006. Logging datahigh-resolution sequence stratigraphy. Earth Science—Journal of China University of Geosciences, 31 (2): 237-244 (in Chinese with English abstract). Yao, T. R., Sun, H., 1999. Advanced digital signal processing. Huazhong University of Science and Technology Press, Wuhan, 1-351 (in Chinese). Zeng, W. C., 2005. The development and application of themodern well logging technology. Petrochemical Industry Trends, 13 (7): 31-35, 44 (in Chinese with Englishabstract). Zhao, P., Zhang, M. L., Liu, J. C., et al., 2006. Status and trends of logging techniques at home and abroad. Well Logging Technology, 30 (5): 385-389 (in Chinesewith English abstract). Zhu, J. B., 2006. The application of MATLAB in well logging data processing. Petroleum Geophysics, 4 (1): 42-44 (in Chinese with English abstract). 方朝亮, 吴铭德, 冯启宁, 2005. 测井关键技术展望. 石油科技论坛, (2): 32-35. 胡边, 饶长辉, 2004. 增量维纳滤波法在波前探测解卷积中的应用. 光学学报, 24 (10): 1305-1309. doi: 10.3321/j.issn:0253-2239.2004.10.003 黄凯, 杨晓海, 徐群洲, 等, 1998. 储集层孔隙度、泥质含量与地震纵横波传播速度的关系. 新疆石油地质, 19 (6): 462-464, 525. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD806.004.htm 蒋恕, 蔡东升, 朱筱敏, 等, 2007. 辽东湾地区孔隙演化的机理. 地球科学——中国地质大学学报, 32 (3): 366-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703008.htm 李舟波, 1995. 钻井地球物理勘探. 北京: 地质出版社, 1-264. doi: 10.3321/j.issn:0476-0301.1995.01.008 马洪艳, 尹成, 李大卫, 2006. 反卷积的直接解法及其在地震资料处理中的应用. 西部探矿工程, 18 (3): 91-92. doi: 10.3969/j.issn.1004-5716.2006.03.044 毛志强, 2003. 非均质储层夹层控油作用初论——非均质储层油气分布规律及测井响应特征. 地球科学——中国地质大学学报, 28 (2): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302014.htm 史謌, 杨东全, 2001. 岩石波速和孔隙度、泥质含量之间的关系研究. 北京大学学报(自然科学版), 37 (3): 379-384. doi: 10.3321/j.issn:0479-8023.2001.03.015 汪立君, 2004. 利用测井资料进行天然气储层产能的评价与预测. 地质科技情报, 23 (3): 57-60. doi: 10.3969/j.issn.1000-7849.2004.03.011 谢寅符, 李洪奇, 孙中春, 等, 2006. 井资料高分辨率层序地层学. 地球科学——中国地质大学学报, 31 (2): 237-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602013.htm 姚天任, 孙洪, 1999. 现代数字信号处理. 武汉: 华中理工大学出版社, 1-351. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY202107035.htm 曾文冲, 2005. 现代测井技术的发展与应用. 当代石油石化, 13 (7): 31-35, 44. doi: 10.3969/j.issn.1009-6809.2005.07.007 赵平, 张美铃, 刘甲辰, 等, 2006.2004-2005年国内外测井技术现状及发展趋势. 测井技术, 30 (5): 385-389. 朱剑兵, 2006. MATLAB软件在测井资料处理中的应用. 油气地球物理, 4 (1): 42-44.