Mineral Component, Texture and Forming Conditions of Hydrothermal Chimney on the East Pacific Rise 9°-10°N
-
摘要: 为研究东太平洋海隆9°~10°N热液活动特征, 采用成因矿物学方法, 通过矿相显微镜、扫描电镜、X射线衍射分析以及电子探针等手段, 对烟囱体矿物成分、结构和地球化学特征进行了研究.该区烟囱体硫化物矿物有3种矿物组合: (1) 硬石膏+白铁矿+黄铁矿; (2) 黄铁矿+闪锌矿+黄铜矿; (3) 黄铜矿+斑铜矿+蓝辉铜矿+铜蓝.成矿热液流体温度经历了低-高-低的变化, 最高温度可达到400℃以上.该热液烟囱为典型的“黑烟囱”类型, 早期硬石膏沉淀形成烟囱体的框架, 后期的金属硫化物在烟囱体内表面沉淀, 由烟囱壁向内形成了硬石膏-黄铁矿、多金属硫化物和黄铜矿及次生铜矿物的矿物分带.Abstract: To characterize the hydrothermal processes of East Pacific rise at 9°-10°N, sulfide mineral compositions, textural and geochemical features of chimney ores were studied using ore microscope, scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques.Resultsshow that there are three mineral assemblages for the hydrothermal chimney ores, namely: (1) anhydrite + marcasite + pyrite, (2) pyrite + sphalerite + chalcopyrite, and (3) chalcopyrite + bornite + digenite + covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.
-
Key words:
- hydrothermal processes /
- black smoker /
- mineral assemblage /
- exsolution texture /
- ore fluid
-
图 1 东太平洋海隆9°~10°N热液烟囱采样位置图(据Haymon et al., 1991)
Fig. 1. Location map of hydrothermal chimney at EPR 9°-10°N
表 1 东太平洋海隆9°~10°N热液烟囱矿物电子探针分析结果(%)
Table 1. Result of electron microprobe analyses of hydrothermal chimney minerals at EPR 9°-10°N
-
Bortnikov, N. S., Genkin, A. D., Dobrovol, M. G., et al., 1991. The nature of chalicopyrite inclusions in sphalerite: Exsolution, coprecipitation, or "disease". Econ. Geol. , 86: 1070-1082. doi: 10.2113/gsecongeo.86.5.1070 Carbotte, S. M., Macdonald, K. C., 1992. East Pacific rise 8°N-10°30′N: Evolution of ridge segments and discontinuities from SeaMARC II and three-dimensional magnetic studies. J. Geophys. Res. , 97: 6959-6982. doi: 10.1029/91JB03065 Christeson, G. L., Kent, G. M., Purdy, G. M., et al., 1996. Extrusive thickness variability at the East Pacific rise, 9°-10°N: Constraints from seismic techniques. J. Geophys. Res. , 101: 2859-2873. doi: 10.1029/95JB03212 Christeson, G. L., Purdy, G. M., Fryer, G. L., 1992. Structure of young oceanic crust at the East Pacific rise near 9°30′N. Geophys. Res. Lett. , 19: 1045-1048. doi: 10.1029/91GL00971 Chu, F. Y., Chen, L. R., 1995. Mineralogy of hydrothermal sulfide at mid-Atlantic ridge. Marine Geology & Quaternary Geology, 15 (2): 73-83 (in Chinese with English abstract). https://pubs.geoscienceworld.org/canmin/article-abstract/46/3/545/126881/MINERALOGY-OF-MASSIVE-SULFIDES-FROM-THE-ASHADZE Deng, J., Wang, J. G., Wei, Y. G., et al., 2007. Ores and gold-bearing characteristics in Xiejiagou gold deposit, Shandong Province. Earth Science—Journal of China University of Geosciences, 32 (3): 373-380 (in Chinese with English abstract). Feely, R. A., Gendron, J. F., Baker, E. T., et al., 1994. Hydrothermal plumes along the East Pacific rise, 8°40′-11°50′N: Particle distribution and composition. Earth Planet. Sci. Lett. , 128: 19-36. doi: 10.1016/0012-821X(94)90023-X Fouquet, Y., Stackelberg, U. V., Charlou, J. L., et al., 1993. Metallogenesis in back-arc environments: The Lau basin example. Econ. Geol. , 88: 2154-2181. doi: 10.2113/gsecongeo.88.8.2154 Gregg, T. K. P., Fornari, D. J., Perfit, M. R., et al., 1996. Rapid emplacement of a mid-ocean ridge lava flow on the East Pacific rise at 9°46′-9°51′N. Earth Planet. Sci. Lett. , 144 (3-4): E1-E7. doi: 10.1016/S0012-821X(96)00179-3 Haymon, R., Fornari, D., Edwards, M., et al., 1991. Hydrothermal vent distribution along the East Pacific rise crest (9° 09′-54′N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridge. Earth Planet. Sci. Lett. , 104: 513-534. doi: 10.1016/0012-821X(91)90226-8 Haymon, R. M., 1983. The growth history of hydrothermal black smoker chimneys. Nature, 301: 695-696. doi: 10.1038/301695a0 Haymon, R. M., Fornari, D. J., Lilley, M. D., et al., 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific rise crest at 9°45′-9°52′N: Direct submersible observation of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planetary Science Letters, 119: 85-101. doi: 10.1016/0012-821X(93)90008-W Heather, L. H., Anna, M., Robert, M. J., et al., 2004. Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific rise, 9°50′N). Deep-Sea Research I, 51: 225-234. doi: 10.1016/j.dsr.2003.10.008 Herzig, P. M., Hannington, M. D., Fouquet, Y., et al., 1993. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the southwest Pacific. Econ. Geol. , 88: 2182-2200. doi: 10.2113/gsecongeo.88.8.2182 Hou, Z. Q., Qu, X. M., Xu, M. J., et al., 2001. The Gacun VHMS deposit in Sichuan Province: From field observation to genetic model. Mineral Deposits, 20 (1): 44-56 (in Chinese with English abstract). Hu, W. X., Zhang, W. L., Hu, S. X., et al., 2000. Study of chalcopyrite disease texture resulted from replacement of chalcopyrite by sphalerite. Acta Mineralogica Sinica, 20 (4): 331-336 (in Chinese with English abstract). Janecky, D. R., Seyfried, W. E., 1984. Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and sea water. Geochim. Cosmochim. Acta, 48: 2723-2738. doi: 10.1016/0016-7037(84)90319-3 Kojima, S., Sugaki, A., 1985. Phase relationship in the Cu-Fe-Zn-S system between 500 ℃ and 300 ℃ under hydrothermal condition. Econ. Geol. , 80: 158-171. doi: 10.2113/gsecongeo.80.1.158 Kurras, G. J., Fornari, D. J., Edwards, M. H., et al., 2000. Volcanic morphology of the East Pacific rise crest 9° 49′-9°52′N: Implications for volcanic emplacement processes at fast-spreading mid-ocean ridges. Marine Geophy. Res. , 21 (1): 23-41. Langmuir, C., Humphris, S., Fornari, D., et al., 1997. Hydrothermal vents near a mantle hotspot: The lucky strike vent field at 37°N on the mid-Atlantic ridge. Earth Planet. Sci. Lett. , 148: 69-91. doi: 10.1016/S0012-821X(97)00027-7 Li, J. L., Wang, S., 1990. Investigation of a new exsolved Cu-Fe-S phase in abnormal sphalerite. Acta Geological Sinica, 3: 201-215 (in Chinese with English abstract). Lupton, J. E., Lilley, M. D., Olson, E., et al., 1991. Gas chemistry of vent fluids from 9°-10°N on the East Pacific rise. EOS Trans. Am. Geophys. , 72: 481. Lusk, J., Calder, B. O. E., 2004. The composition of sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 ℃and 535 ℃. Chemical Geology, 203: 319-345. doi: 10.1016/j.chemgeo.2003.10.011 Münch, U., Blum, N., Halbach, P., 1999. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, central Indian ridge. Chemical Geology, 155: 29-44. doi: 10.1016/S0009-2541(98)00139-9 Oosting, S. E., Von Damm, K. L., 1996. Bromide/chloride fractionation in seafloor hydrothermal fluids from 9°-10°N East Pacific rise. Earth Planet. Sci. Lett. , 144: 133-145. doi: 10.1016/0012-821X(96)00149-5 Shank, T. M., Fornari, D. J., Von Damm, K. L., et al., 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50′N, East Pacific rise). Deep-sea Research II, 45: 465-515. doi: 10.1016/S0967-0645(97)00089-1 Shanks, W. C., Bohlke, J. K., Seal, R. R., et al., 1991. Stable isotope studies of vent fluids, 9°-10°N East Pacific rise: Water-rock interaction and phase separation. EOS Trans. Am. Geophys. , 72: 481. Tivey, M. K., Humphris, S. E., Thompson, G., et al., 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res. , 100 (12): 527-555. doi: 10.1029/95JB00610 Wiggins, L. B., Craig, J. R., 1980. Reconnaissance of the Cu-Fe-Zn-S system: Sphalerite phase relationship. Econ. Geol. , 75: 742-751. doi: 10.2113/gsecongeo.75.5.742 Wu, S. Y., Gao, A. G., Wang, K. Y., et al., 2000. World seafloor hydrothermal sulfide resources. China Ocean Press, Beijing, 151 (in Chinese). Yund, R. A., Kullerud, G., 1996. Thermal stability of assemblages in the Cu-Fe-S system. Jour. Petro. , 7: 454-488. https://academic.oup.com/petrology/article/7/3/454/1403151 初凤友, 陈丽蓉, 1995. 大西洋中脊热液硫化物的矿物学研究. 海洋地质与第四纪, 15 (2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ502.008.htm 邓军, 王建国, 韦延光, 等, 2007. 山东谢家沟金矿床矿石与金矿物特征. 地球科学——中国地质大学学报, 32 (3): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703009.htm 候增谦, 曲晓明, 徐明基, 等, 2001. 四川呷村VHMS矿床: 从野外观察到成矿模型. 矿床地质, 20 (1): 44-56. doi: 10.3969/j.issn.0258-7106.2001.01.006 胡文瑄, 张文兰, 胡受奚, 等, 2000. 闪锌矿交代黄铜矿形成的"黄铜矿病毒"结构. 矿物学报, 20 (4): 331-336. doi: 10.3321/j.issn:1000-4734.2000.04.002 李九玲, 汪苏, 1990. "异常闪锌矿"中一种铜铁硫新出溶相矿物的研究. 地质学报, 3: 201-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199003002.htm 吴世迎, 高爱国, 王揆洋, 等, 2000. 世界海底热液硫化物资源. 北京: 海洋出版社, 151.