Finite Fault Source Model for Predicting Near-Fault Strong Ground Motion
-
摘要: 提出了近断层强地震动预测中建立活断层上设定地震有限断层震源模型的方法和步骤.首先,根据地震地质和地震活动性调查以及地球物理勘探等资料,确定活断层的空间方位和滑动类型; 然后,根据地震定标律确定活断层的宏观震源参数; 第三,将高强体模型与k平方滑动模型相结合,产生断层破裂面上的混合滑动分布.在此基础上,预测了与1994年Northridge地震断层类型、矩震级(Mw6.7)基本一致的设定地震的有限断层震源模型.最后,将预测的有限断层震源模型与基于地震学的、使用动力学拐角频率的地震动随机合成方法相结合,预测了1994年Northridge地震近断层12个基岩台站的加速度时程,并和实际记录进行了对比.结果表明,用上述方法和步骤建立的有限断层震源模型是可行、实用的.Abstract: A new method and steps of setting up a finite fault source model of a scenario earthquake on an active fault for predicting near-fault strong ground motion are proposed here. Firstly,spatial orientation and slip type of the active fault are deduced from data of seismic geology,seismicity,and geophysics exploration and so on.Secondly,macro-source parameters of the active fault are inferred from seismic scaling laws.Thirdly,the hybrid slip model on the fault plane is generated by combining the asperity model with k square slip model.On the basis of the above mentioned,the finite fault source model of a scenario earthquake(its fault type and moment magnitude the same as 1994 Northridge earthquake's,i.e.,the reverse fault and Mw6.7) is predicted consequently.Lastly,combining the finite fault source model predicted by mentioned-above with stochastic method of synthesizing ground motion using dynamic corner frequency based on seismology,we predict acceleration time histories of the 12 stations during 1994 Northridge earthquake.And comparison between predicted and recorded acceleration time histories shows that the above-mentioned method and the steps of modeling finite fault source model are feasible and practicable.
-
表 1 预测的设定地震(Mw6.7)的有限断层震源模型参数与1994年Northridge地震震源参数比较
Table 1. Comparison between parameter values of finite fault source models of both 1994 Northridge earthquake (Mw 6.7) and a scenario earthquake (Mw 6.7) on an active fault
表 2 1994年Northridge地震近断层12个基岩台站的经纬度和震源距
Table 2. The geographic coordinates and source distances of twelve near-fault base-rock stations of 1994 Northridge earthquake for predicting ground motion
表 3 1994年Northridge地震近断层基岩场地上地震动预测输入参数
Table 3. The input parameters for predicting ground motion of near-fault base-rock stations of 1994 Northridge earthquake (Mw 6.7)
-
Aki, K., Richards, P. G., 1980. Quantitative seismology: Theory and methods. WH Freeman & Co Ltd., New York. Atkinson, G. M., Boore, D. M., 1995. Ground motion relations for eastern North America. Bulletin of the Seis-mological Society of America, 85(1): 17-30. doi: 10.1785/BSSA0850010017 Atkinson, G. M., Boore, D. M., 1998. Evaluation of modelsfor earthquake source spectra in eastern North America. Bulletin of the Seismological Society of America, 88(4): 917-934. doi: 10.1785/BSSA0880040917 Beresnev, I. A., Atkinson, G. M., 1998. Stochastic finite-faultmodeling of ground motions fromthe1994Northridge, California, earthquake. I. Validation on rock sites. Bul-letin of the Seismological Society of America, 88(6): 1392-1401. Beresnev, I. A., Atkinson, G. M., 2001. Subevent structureof large earthquakes—Aground motion perspective. Geophysical Researth Letters, 28(1): 53-56. Bernard, P., Herrero, A., Berge, C., 1996. Modeling directivityof heterogeneous earthquake ruptures. Bulletinofthe Seis-mological Society of America, 86(4): 1149-1160. Boore, D. M., 1983. Stochastic si mulation of high-frequencyground motions based on seismological models of theradiated spectra. Bulletin of the Seismological Societyof America, 73(6A): 1865-1894. Boore, D. M., 2003. Si mulation of ground motion using thestochastic method. Pure and Applied Geophysics, 160: 635-676. doi: 10.1007/PL00012553 Boore, D. M., Joyner, W. B., 1997. Site amplifications for generic rock sites. Bulletin of the Seismological Societyof America, 87(2): 327-341. doi: 10.1785/BSSA0870020327 Brune, J. N., 1970. Tectonic stress and the spectra of seismicshear waves fromearthquakes. Journal of Geophysical Research, 75(26): 4997-5009. doi: 10.1029/JB075i026p04997 Frankel, A., 1995. Si mulating strong motions of large earthquakes using recordings of small earthquakes: The Loma Prieta mainshock as a test case. Bulletinofthe Seis-mological Society of America, 85(4): 1144-1160. doi: 10.1785/BSSA0850041144 Gallovic, F., Brokesove, J., 2004. On strong ground motionsynthesis with k-2slip distributions. Journal of Seismology, 8: 211-224. doi: 10.1023/B:JOSE.0000021438.79877.58 Hartzell, S. H., 1978. Earthquake aftershocks as Green sfunctions. Geophysical Research Letters, 5(1): 1-4. doi: 10.1029/GL005i001p00001 Hartzell, S. H., Harmsen, S., Frankel, A., et al., 1999. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bulletin of the Seismological Society of America, 89(6): 1484-1504. Herrero, A., Bernard, P., 1994. A kinematic self-si milar rup-ture process for earthquakes. Bulletin of the Seismo-logical Society of America, 84(4): 1216-1228. doi: 10.1785/BSSA0840041216 Hisada, Y., 2000. Atheoretical omega-square model consid-ering the spatial variation in slip and rupture velocity. Bulletin of the Seismological Society of America, 90(2): 387-400. doi: 10.1785/0119990083 Hisada, Y., 2001. Atheoretical omega-square model consideringthe spatial variation in slip and rupture velocity, Part2: Case for a two-di mensional source model. Bulletin of the Seismological Society of America, 91(4): 651-666. doi: 10.1785/0120000097 Irikura, K., 1983. Semi-empirical esti mation of strong groundmotions during large earthquakes. Bulletin, Disaster Prevention Research Institute, Kyoto University, Kyo-to, Japan, 33: 63-104. Irikura, K., 2000. Prediction of strong ground motions fromfuture earthquakes caused by active faults—Case of the Osaka basin. 12th World Conference on Earthquake En-gineering(12WCEE), CDROM, No. 2687. Auckland, New Zealand during 30 January-4 February, 2000. Irikura, K., Iwata, T., 1993. Si mulation prediction of strongground motion: Theoretical approach. In: The Architectural Institute of Japan, ed., Earthquake motion and ground con-ditions. The Architectural Institute of Japan, 337. W. Kamae, K., Irikura, K., Pitarka, A., 1998. A technique forsi mulating strong ground motion using hybrid Green sfunction. Bulletin of the Seismological Society of A-merica, 88(2): 357-367. doi: 10.1785/BSSA0880020357 Mai, P. M., Beroza, G. C., 2002. Aspatial randomfield mod-el to characterize complexityin earthquake slip. Journalof Geophysical Research, 107(B11): 2308. Miyake, H., Iwata, T., Irikura, K., 2003. Source character-ization for broadband ground-motion si mulation: Kine-matic heterogeneous source model and strong motiongeneration area. Bulletin of the Seismological Societyof America, 93(6): 2531-2545. doi: 10.1785/0120020183 Motazedian, D., Atkinson, G. M., 2005. Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95(3): 995-1010. doi: 10.1785/0120030207 Pitarka, A., Somerville, P., Fukushi ma, Y., et al., 2000. Si mulation of near-fault strong-ground motion using hy-brid Green s functions. Bulletin of the Seismological Society of America, 90(3): 566-586. doi: 10.1785/0119990108 Saragoni, G. R., Hart, G. C., 1974. Si mulation of artificialearthquakes. Earthquake Engineering and Structural Dynamics, 2(3): 249-267. Somerville, P. G., 1998. Emerging art: Earthquake groundmotion. In: Dakolas, P., Yegian, M., eds., Proceedings-geotechnical earthquake engineering and soil dynamics III. ASCE Speciality Conf. Special Pub. No. 75, Seattle, WA, 1-38. Somerville, P., Irikula, K., Graves, R., et al., 1999. Characterizing crustal earthquake slip models for the predictio of strong ground motion. Seismological Research Let-ters, 70(1): 59-80. doi: 10.1785/gssrl.70.1.59 Wald, D. J., Heaton, T. H., Hudnut, K. W., 1996. The sliphistory of the1994Northridge, California, earthquakedetermined from strong-motion, teleseismic, GPS, andleveling data. Bulletin of the Seismological Society of America, 86(1B): S49-S70. doi: 10.1785/BSSA08601B0S49 Wang, H. Y., 2004. Finite fault source model for predictingnear field strong ground motion: [Dissetation]. Instituteof Engineering Mechanics, China Earthquake Adminis-tration, Harbin(in Chinese). Wang, H. Y., Tao, X. X., 2003. Relationships between mo-ment magnitude and fault parameters: Theoretical andsemi-empirical relationships. Earthquake Engineeringand Engineering Vibration, 2(2): 201-211. doi: 10.1007/s11803-003-0004-x Wang, H. Y., Tao, X. X., 2004. Hybrid slip model for pre-dicting nearfield strong ground motion. In: 2004 ANC-ER annual meeting: Networking of young earthquakeengineering researchers and professionals. CDROM, July 28-30, 2004, The Sheraton Princess Kaiulani, Hono-lulu, Hawaii. Wang, H. Y., Tao, X. X., 2005. Characterizing a shallowearthquake asperity model for predicting near fieldstrong ground motion. Journal of Harbin Institute of Technology, 37(11): 1533-1539(in Chinese with Eng-lish abstract). Xie, L. L., Wang, H. Y., 2005. A proposal of Chinese trans-lation of three technical terms in near-field seismology. Earthquake Engineering and Engineering Vibration, 25(5): 198-200(in Chinese with English abstract). Zeng, Y. H., Anderson, J. G., Yu, G., 1994. A compositesource model for computing realistic synthetic strongground motions. Geophys. Res. Lett. , 21: 725-728. doi: 10.1029/94GL00367 王海云, 2004. 近场强地震动预测的有限断层震源模型(博士论文). 哈尔滨: 中国地震局工程力学研究所. 王海云, 陶夏新, 2005. 近场强地震动预测中浅源地震的As-perity模型特征. 哈尔滨工业大学学报, 37(11): 1533-1539. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200511021.htm 谢礼立, 王海云, 2005. 近场地震学中3个术语译名的商榷. 地震工程与工程振动, 25(6): 198-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200506033.htm