Variation Law of Mineral Emissivity Spectra with Mineral Granularity and Emission Angle Based on Hapke Model
-
摘要: 矿物红外发射光谱随粒度与发射角的变异是热红外地质遥感中的基础性问题之一, 温度与发射率反演以及矿物信息提取均需要考虑发射光谱的变异.常规实验室矿物发射光谱测量技术难度较大, 限制了对矿物发射光谱变异规律的深入研究.利用Hapke岩矿辐射传输模型对石英、白云母和钙长石3种矿物的发射光谱进行了模拟, 将模拟结果与实测光谱进行了对比, 总结了矿物发射光谱随粒度、发射角的变异规律, 分析了Hapke发射率模型存在的问题.Hapke模型可较好地模拟矿物发射光谱整体谱形与主要光谱特征及其变异规律, 但在某些光谱细节上与实测光谱仍有一定差异, 其原因可能是模型中矿物介质中多次散射辐射为“各向同性”的假设所致; 随粒度增加, 吸收特征会增强, 且位置可能发生漂移; 随发射角增加, 发射率逐渐减小, 透射特征和吸收特征逐渐增强, 但光谱的整体形状和透射特征、吸收特征、克里斯琴森特征的位置与形态均基本保持不变.Abstract: One of basic issues in thermal infrared remote sensing geology is the variation law of mineral emissivity spectra with mineral granularity and emission angle, and the law is required when several kinds of ground information are retrieved such as temperature, emissivity and mineral. However, the law is still unknown because it is difficult to measure the mineral emissivity spectra in the laboratory. In this experiment, emissivity spectra of quartz, muscovite and anorthite are calculated using Hapke radiative transfer model, and the calculation results are compared with measured spectra. Finally, the variation law of mineral emissivity spectra with granularity and emission angle is summarized, and the problem of Hapke emissivity model is analyzed. Research results show that, Hapke radiative transfer model could be used to simulate minerals emissivity spectral and variation, and some fine spectral features are different from measured spectral probably owing to Hapke model hypothesis in which multiscattering radiation is isotropic. The variation of spectral with granularity is complicated and the variation law is different to different minerals. The common law is that, with the increase of granularity, reststrahlen features strengthen, reststrahlen features and wavelength change, and Christensen features remain stable. With increase of emission angle, emssivity becomes lower, reststrahlen and transparency features become more obvious, and the whole spectral feature and wavelength of some features such as transparency, reststrahlen and Christensen features keep stable.
-
Key words:
- emissivity /
- mineral /
- infrared spectroscopy
-
图 1 石英发射光谱特征(据Melissa and Christensen, 1996修改)
Fig. 1. Emissivity features of quartz
表 1 石英的分散度参数
Table 1. Dispersion parameters of quartz
-
Aronson, J. G., Strong, P. F., 1975. Optical constants of minerals and rocks. Applied Optics, 14 (12): 2914-2920. doi: 10.1364/AO.14.002914 Bandfield, J. L., 2002. Global mineral distributions on Mars. Journal of Geophysical Research, 107 (E6): 5042-5063. doi: 10.1029/2001JE001510 Bandfield, J. L., Hamilton, V. E., Christensen, P. R., 2000. A global view of Martian surface composition from MGS-TES. Science, 287 (5458): 1626-1630. doi: 10.1126/science.287.5458.1626 Buratti, B. J., Hicks, M. D., Soderblom, L. A., et al., 2004. Deep space 1 photometry of the nucleus of Comet19P/Borrelly. Icarus, 167 (1): 16-29. doi: 10.1016/j.icarus.2003.05.002 Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2000. Athermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 105 (E4): 9735-9739. doi: 10.1029/1998JE000624 Clark, R. N., Swayzer, G. A., Livo, K. E., et al., 2003. I maging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert system. Journalof Geophysical Research, 108 (E2): 5131. Conel, J. E., 1969. Infrared emissivities of silicates: Experimental results and a cloudy at mosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74 (6): 1614-1634. doi: 10.1029/JB074i006p01614 Copper, B. L., Salisbury, J. W., Killen, R. M., et al., 2002. Midinfared spectral features of rocks and their powders. Journal of Geophysical Research, 107 (E4): 5017. doi: 10.1029/2000JE001462 Cruikshank, D. P., Dalle-Ore, C. M., Roush, T. L., et al., 2001. Constraints on the composition of Trojan asteroid 624 Hector. Icarus, 153 (2): 348-360. doi: 10.1006/icar.2001.6703 Dozier, J., Warren, S. G., 1982. Effect of viewing angle on infrared brightness temperature of snow. Water Resources Research, 18 (5): 1424-1434. doi: 10.1029/WR018i005p01424 Hamilton, V. E., 2000. Thermal infrared emission spectroscopy of the pyroxene mineral series. Journal of Geo-physical Research, 105 (E4): 9701-9716. doi: 10.1029/1999JE001112 Hansen, J. E., Travis, L. D., 1974. Light scattering in planetary at mospheres. Space Science Review, 16 (4): 527-610. doi: 10.1007/BF00168069 Hapke, B., 1981. Bidirectional reflectance spectroscopy 1. Theory. Journal of Geophysical Research, 86 (B4): 3039-3054. doi: 10.1029/JB086iB04p03039 Hapke, B., 1984. Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness. Icarus, 59 (1): 41-59. doi: 10.1016/0019-1035(84)90054-X Hapke, B., 1986. Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect. Icarus, 67 (2): 264-280. doi: 10.1016/0019-1035(86)90108-9 Hapke, B., 1993a. Combined theory of reflectance and emit-tance spectroscopy. In: Remote geochemical analysis: Elemental and mineralogical composition. CambridgeUniversity Press, London, 31-41. Hapke, B., 1993b. Theory of reflectance and emittance spectroscopy. Cambridge University Press, London. Hapke, B., 1999. Scattering and diffraction of light by particles in planetary regoliths. Journal of Quantitative Spectroscopy of Radiative and Transfer, 61 (5): 565-581. doi: 10.1016/S0022-4073(98)00042-9 Hapke, B., 2002. Bidirectional reflectance spectroscopy: 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157 (2): 523-534. doi: 10.1006/icar.2002.6853 Hapke, B., Nelson, R., Smythe, W., 1998. The oppositio neffect of the moon: Coherent backscatter and shadow hiding. Icarus, 133 (1): 89-97. doi: 10.1006/icar.1998.5907 Hudson, R. S., Ostro, S. J., 1999. Physical model of asteroid 1620 Geographos from radar and optical data. Icarus, 140 (2): 369-378. doi: 10.1006/icar.1999.6142 Kahle, A. B., Alley, R. E., 1992. Separation of temperature and emittance in remotely sensed radiance measurements. Remote Sensing of Environment, 42 (2): 107-111. doi: 10.1016/0034-4257(92)90093-Y Kirkland, L., Herr, K., Keim, E., et al., 2002. First use of an airborne thermal infrared hyperspectral scanner for compositional mapping. Remote Sensing of Environment, 80 (3): 447-459. doi: 10.1016/S0034-4257(01)00323-6 Klingelh fer, G., Morris, R. V., Bernhardt, B., et al., 2004. Jarosite and hematite at Meridiani planum from opportunity's MÖssbauer spectrometer. Science, 306 (5702): 1740-1745. doi: 10.1126/science.1104653 Lane, M. D., Christensen, P. R., 1997. Thermal infrared emission spectroscopy of anhydrous carbonates. Journal of Geophysical Research, 102 (E11): 25581-25592. doi: 10.1029/97JE02046 Li, X. W., Wang, J. D., Strahler, A. H., 1999. Scale effects of Planck's law over nonisothermal blackbody surface. Science in China (Series E), 42 (6): 652-656. doi: 10.1007/BF02917003 Liu, L. W., Zheng, H. B., Jian, Z. M., 2005. Visible reflectance record of South China Sea sediments during the past 220 ka and its implications for East Asian monsoon variation. Earth Science—Journal of China University of Geosciences, 30 (5): 543-549 (in Chinesewith English abstract). Liu, Z. F., Christophe, C., Alain, T., 2005. Application of Fourier transform infrared (FTIR) spectroscopy in quantitative mineralogy of the South China Sea: Example of core MD01-2393. Earth Science—Journal of China University of Geosciences, 30 (1): 25-29 (inChinese with English abstract). Mallama, A., Wand, D., Howard, R. A., 2002. Photometry of mecury from SOHU/LASCO and earth: The phase function from 2 to 170°. Icarus, 155 (2): 253-264. doi: 10.1006/icar.2001.6723 McGuire, A. F., Hapke, B. W., 1995. An experimental study of light scattering by large, irregular particles. Icarus, 113 (1): 134-155. doi: 10.1006/icar.1995.1012 Melissa, L. W., Christensen, P. R., 1996. Optical constants of minerals derived from emission spectroscopy: Application to quartz. Journal of Geophysical Research, 107 (B7): 15921-15931. Moersch, J. E., Christensen, P. R., 1995. Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra. Journal of GeophysicalResearch, 100 (E4): 7465-7477. Pit man, K. M., Wolff, M. J., Clayton, G. C., 2005. Application of modern radiative transfer tools to model laboratory quartz emissivity. Journal of Geophysical Research, 110 (E08003): 1-15. Poulet, F., Cuzzi, J. N., Cruikshank, D. P., et al., 2002. Comparison between the Shkuratov and Hapke scattering theories for solid planetary sufaces: Application to the surface composition of two Centaurs. Icarus, 160 (2): 313-324. doi: 10.1006/icar.2002.6970 Reinart, A., Reinhold, M., 2008. Mapping surface temperature in large lakes with MODIS data. Remote Sensing of Environment, 112 (2): 603-611. doi: 10.1016/j.rse.2007.05.015 Salisbury, J. W., Wald, A., 1992. The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus, 96 (1): 121-128. doi: 10.1016/0019-1035(92)90009-V Salisbury, J. W., Walter, L. S., 1989. Thermal infrared (2.5-13.5μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research, 94 (B7): 9192-9202. doi: 10.1029/JB094iB07p09192 Shepard, M. K., Helfenstein, P., 2007. A test of the Hapke photometric model. Journal of Geophysical Research, 112 (E03001): 1-17. Simonelli, D. P., Veverka, J., Thomas, P. C., et al., 1996. Ida lightcurves: Consistency with Galileo shape and photometric models. Icarus, 120 (1): 38-47. doi: 10.1006/icar.1996.0035 Spitzer, W. G., Kleinman, D. A., 1961. Infrared lattice bands in quartz. Phsical Review, 121 (5): 1324-1335. doi: 10.1103/PhysRev.121.1324 Vaughan, R. G., Calvin, W. M., Taranik, J. V., 2003. SE-BASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping. Remote Sensing of Environment, 85 (1): 48-63. doi: 10.1016/S0034-4257(02)00186-4 Vaughan, R. G., Hook, S. J., Calvin, W. M., et al., 2005. Surface mineral mapping at streamboat springs, Neveda, USA with multi-wavelength thermal infrared images. Remote Sensing of Environment, 99 (1-2): 140-158. doi: 10.1016/j.rse.2005.04.030 Wald, A. E., Salisbury, J. W., 1995. Thermal infrared directional emissivity of powdered quartz. Journal of Geophysical Research, 100 (B12): 24665-24675. doi: 10.1029/95JB02400 刘连文, 郑洪波, 翦知湣, 2005. 南海沉积物漫反射光谱反映的220ka以来东亚夏季风变迁. 地球科学———中国地质大学学报, 30 (5): 543-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505004.htm 刘志飞, Christophe, C., Alain, T., 2005. 傅里叶变换红外光谱(FTIR) 方法在南海定量矿物学研究中的应用: 以MD01-2393孔为例. 地球科学———中国地质大学学报, 30 (1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501002.htm