Geobiological Processes and the Formation of Hydrocarbon Source Rocks in the Carboniferous-Early Permian Glacial Period in South China
-
摘要: 石炭纪-二叠纪冈瓦纳大陆成冰事件控制着全球(尤其是华南地区) 的海平面变化, 从而决定着生境型及生产力的变化.冈瓦纳大陆成冰事件造成石炭纪-早二叠世早期有4次全球性海退, 其中Tournasian末期到Visean早期的海退在华南地区最为明显, 导致生境型发生了明显的变化.在盆地相区, 由斜坡相(Ⅴ1) 转变为下部浅海上部(Ⅳ1).在远岸碳酸盐台地区, 由上部浅海(Ⅲ1)、(Ⅲ2) 转变为潮间带(Ⅱ1)、潮下带(Ⅱ2).在连岸碳酸盐台地区, 由浅水碳酸盐沉积区(Ⅱ1)、(Ⅱ2) 转变为陆相或海陆交互相沉积区.通过对生境型、生物类群的分布及氧化还原环境的分析, 探讨了冰期与间冰期生物群的演替、海洋生物生产力及埋葬条件的变化, 进而确定成冰事件对烃源岩形成和分布的控制作用.Abstract: From Carboniferous to Early Permian, the glaciation of Gondwanaland played a crucial role in controlling changes of the sea level, the biohabitat types and the productivity, in particular in South China. Four global regression events identified during this period were attributed to the glaciation of Gondwanaland. In South China, the regression event occurred between the latest Tournasian and early Visean led to an obvious change of the biohabitat types. In the intraplatform basin, the biohabitat types shifted from Ⅴ1 to Ⅳ1. In the isolated carbonate platform, the biohabitat types shifted from Ⅲ1-Ⅲ2 to Ⅱ1-Ⅱ2. In the carbonate platform connected with the land, the biohabitat types shifted from Ⅱ1 and Ⅱ2 to terrestrial or marine-continental sedimentary environment. Analyses of the biohabit at types, paleocommunities and redox conditions, enable us to investigate the paleocommunity evolution, the productivity of marine organisms and the changes of organic burial conditions in the glacial and postglacial period, and thus to explore the control of Carboniferous glaciation on the generation and distribution of hydrocarbon source rocks.
-
Key words:
- Carboniferous /
- glaciation /
- hydrocarbon source rocks /
- biohabitat type
-
图 1 石炭纪扬子板块与欧美板块海平面变化曲线对比(李儒峰等, 1997)
Fig. 1. Correlation of sea-level curves of the Carboniferous between Yangtze and European-American plate
图 4 沉积序列与烃源岩发育相关性(Pasley et al., 1991)
Fig. 4. Plot showing the relationship between depositional successions and the marine source rocks
-
Bohacs, K. M., Grabowski, Jr. G. J., Carroll, A. R., et al., 2005. Production, destruction, and dilution: The manypaths to source-rock development. Special Publication-Society for Sedi mentary Geology, 82: 61-101. Bromley, R. G., Ekdale, A. A., 1984. Chondrites: A tracefossil indicator of anoxia in sedi ments. Science, 224 (4651): 872-874. doi: 10.1126/science.224.4651.872 Carroll, A. R., Wartes, M. A., 2003. Organic carbon burialby large Permian lakes, Northwest China. Special Pa-per—Geological Society of America, 370: 91-104. Clavert, S. E., 1987. Oceangraphic controls on the accumula-tion of organic matter in marine sedi ments. In: Brook, J., Fleet, A. J., eds., Marine petroleum source rock. Blackwell Scientific, London, 137-151. Crowley, T. J., Baum, S. K., 1991. Esti mating Carboniferoussea-level fluctuations from Gondwana ice extent. Geolo-gy, 19 (10): 975-977. doi: 10.1130/0091-7613(1991)019<0975:ECSLFF>2.3.CO;2 Feng, Z. Z., Yang, Y. Q., Bao, Z. D., et al., 1998. Lithofacies paleogeography of Carboniferous in South China. Geo-logical Publishing Housing, Beijing (in Chinese). Gong, Y. M., 2004. Facies characteristics and tiering distri-butions of Chondrites. Acta Palaeontologica Sinica, 43 (1): 94-102 (in Chinese with English abstract). Jasper, J. P., Hayes, J. M., 1990. Acarbon isotope record of CO2 levels during the late Quaternary. Nature, 347 (6292): 462-464. doi: 10.1038/347462a0 Li, R. F., Liu, B. P., Zhao, C. L., 1997. Correlation of Carbonif-erous depositional sequences onthe Yangtze plate with oth-ers on a global scale. Acta Sedimentologica Sinica, 15 (3): 23-28 (in Chinese with English abstract). Liu, B. P., Li, R. F., You, D. H., 1994. Carboniferous se-quence stratigraphy and glacio-eustasy of Triticites zonein Southern Guizhou, China. Earth Science—Journal of China University of Geosciences, 19 (5): 553-564 (inChinese with English abstract). Ma, L., Chen, H. J., Gan, K. W., et al., 2004. Geotectonicsand petroleum geology of marine sedi mentary rocks insouthern China. Geological Publishing Housing, Beijing (in Chinese). Meyers, S. R., Sageman, B. B., Lyons, T. W., 2003. The role ofsulfate reductionin organic matter degradation and molyb-denumaccumulation: Theoretical framework and applicationto a Cretaceous organic matter burial event. Abstracts withPrograms—Geological Society of America, 35 (6): 82. Pasley, M. A., Gregory, W. A., Hart, G. F., 1991. Organicmattter variations in transgressive and regressiveshales. Organic Geochemistry, 17 (4): 483-509. doi: 10.1016/0146-6380(91)90114-Y Qin, J. X., Zeng, Y. F., Huang, Z. X., et al., 1996. Carboniferous sequence stratigraphy and sea-level changesinthe Majiaobadistrict, Sichuan. Sedimentary Facies and Palaeogeogra-phy, 16 (1): 19-33 (in Chinese with English abstract). Vail, P. R., Todd, R. G., Sangree, J. B., 1977. Seismic stratigra-phy and global changes of sea level. In: Seismic stratigra-phy-applications to hydrocarbon exploration. American As-sociation of Petroleum Geologists, 26: 99-116. Veevers, J. J., Powell, M., 1987. Late Paleozoic glacial epi-sodes in Gondwanaland reflected in transgresssive-re-gressive depositional sequences in Euramerica. Geolog-ical Society of America Bulletin, 98 (4): 475-487. doi: 10.1130/0016-7606(1987)98<475:LPGEIG>2.0.CO;2 Wu, Y., Gong, Y. M., Du, Y. S., 1997. Devonian sequence stratig-raphy and sea-level changes within the South China plate. China University of Geosciences Press, Wuhan (in Chinese). 冯增昭, 杨玉卿, 鲍志东, 等, 1998. 中国南方石炭纪岩相古地理. 北京: 地质出版社. 龚一鸣, 2004. 遗迹化石Chondrites的指相意义和阶层分布. 古生物学报, 43 (1): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200401008.htm 李儒峰, 刘本培, 赵澄林, 1997. 扬子板块石炭纪沉积层序及其全球性对比研究. 沉积学报, 15 (3): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB703.004.htm 刘本培, 李儒峰, 尤德宏, 1994. 黔南独山石炭系层序地层及麦粒筳带冰川型全球海平面变化. 地球科学——中国地质大学学报, 19 (5): 553-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199405001.htm 马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社. 覃建雄, 曾允孚, 黄志勋, 等, 1996. 四川龙门山马角坝地区石炭纪层序地层及海平面变化研究. 岩相古地理, 16 (1): 19-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199601003.htm 吴诒, 龚一鸣, 杜远生, 1997. 华南泥盆纪层序地层及海平面变化. 武汉: 中国地质大学出版社.