PRESENT-DAY STRUCTURAL ACTIVITY OF SHENZHEN FRACTURE ZONE AND ITS EFFECT ON CRUSTAL STABILITY OF WATER DIVERSION TUNNEL IN SHENZHEN
-
摘要: 从微震活动、断层位移监测、现今地应力测量等方面进行深圳断裂带现今构造活动性分析, 配合构造应力场三维数值模拟, 定量计算了深圳断裂带与输水隧洞交汇部位的现今活动量级范围以及输水隧洞不同地段轴向与最大水平主压应力夹角, 推算出深埋输水隧洞地段现今构造应力状态, 并结合地震活动性及其危险性、岩土体稳定性等研究成果, 运用模糊数学方法, 评价输水隧洞工程地壳稳定性, 为工程设计和施工提供依据.Abstract: This paper presents the analysis of the present-day structural activity of the Shenzhen fracture zone in terms of the micro-seismicity, fault displacement monitoring and present-day crustal stress measurements. A numerical simulation of the present-day three-dimensional tectonic stress field was then used to make a quantitative calculation of the present-day activity magnitude range at the intersection between the Shenzhen fault zone and the water diversion tunnel, and the included angle between the axial orientations in different parts of the water diversion tunnel and the maximum horizontal principal compressive stress, and to infer the present-day structural stress state of the deeply-buried sectors of the water diversion tunnel. The research results both in seismic activities and risks and in rock and soil stability can be used by means of fuzzy mathematics to assess the crustal stability of the water diversion tunnel project, providing a basis for the engineering designing and construction.
-
图 1 深圳市东水西调输水工程廊道地区构造地质略图
1.第三系; 2.侏罗系; 3.石炭系; 4.泥盆系; 5.震旦系; 6.花岗岩与混合花岗岩; 7.地质界线; 8.主要断裂及其编号(即深圳断裂带) : (1) 企岭吓-九尾岭断裂; (2) 横岗-罗湖断裂; (3) 清风岭断裂; (4) 炮台山断裂; (5) 田螺坑断裂; (6) 石井岭-黄竹坑断裂; 9.次级断裂; 10.压扭性断裂; 11.实测与推测断裂; 12.断层位移监测站; 13.输水管线编号/设计水位高程; 14.输水明渠或箱涵; 15.输水隧洞; 16.深埋输水隧洞; 17.输水管线备用方案; 18.输水工程廊道地区; 19.水位与高程; 20.山峰与高程
Fig. 1. Tectonic geological map in the corridor area of the diversion tunnel in Shenzhen
表 1 深圳市输水工程附近实测地应力
Table 1. Results of geostress measurements near the diversion tunnel engineering
表 2 深圳市输水工程三维数值模拟物性参数
Table 2. Parameters for three_dimensional tectonic stress field simulation around the diversion tunnel
表 3 深圳断裂带主要断层与输水隧洞交汇部位现今活动速率
Table 3. Present rate of displacement of major faults of Shen- zhen fracture belt at the intersections with the tunnel
表 4 隧洞轴向(α)与最大水平主压应力(σh, max)方向夹角
Table 4. Angle enclosed between the maximum horizontal prin- cipal compressive stress direction and the tunnel axis
表 5 深圳市东水西调输水工程深埋隧洞地段三维构造应力状态
Table 5. Three_dimensional simulated tectonic stress states at four deep buried sectors of the diversion tunnel
-
[1] 地质矿产部《深圳市区域稳定性评价》编写组. 深圳市区域稳定性评价[M ]. 北京: 地质出版社, 1991. [2] 广东省地质矿产局. 中华人民共和国广东省区域地质志[M]. 北京: 地质出版社, 1988. [3] 胡海涛, 易明初, 向祖廷, 等. 广东核电站规划选址区域稳定性分析与评价[M ]. 北京: 档案出版社, 1988. [4] 中国地震学会地震地质专业委员会. 中国活动断裂[M]. 北京: 地震出版社, 1982. [5] 陈庆宣, 王维襄, 孙叶, 等. 岩石力学与构造应力场分析[M]. 北京: 地质出版社, 1998. [6] 孙叶, 谭成轩. 现今区域构造应力场与地壳运动趋势分析[J]. 地质力学学报, 1995, 1 (3): 1~12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX503.000.htm [7] 谭成轩, 王连捷, 孙宝珊, 等. 含油气盆地三维构造应力场数值模拟方法[J]. 地质力学学报, 1997, 3 (1): 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX701.009.htm [8] Ranajit G, Yoshioka S, Oike K. Three_dimensional nu- merical simulation of the subduction dynamics in the Sunda Arc region, Southeast Asia[ J]. Tectonophysics, 1990, 181(1~ 4): 223~ 255. doi: 10.1016/0040-1951(90)90018-4 [9] 孙叶, 谭成轩, 李开善, 等. 区域地壳稳定性定量化评价[M]. 北京: 地质出版社, 1999. [10] 孙叶, 谭成轩, 杨贵生, 等. 中国区域地壳稳定性定量化评价与分区[J]. 地质力学学报, 1997, 3 (3): 42~5 2. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX703.006.htm [11] Chen Q X, Hu H T, Sun Y, et al. Assessment of region- al crustal stability and its application to engineering geolo- gy in China[J]. Episodes, 1996, 18(1, 2): 69~ 72. [12] Tan C X, Sun Y, Wang R J, et al. Assessment and zonation of regional crustal stability in and around the dam region of the Three Gorges Project on the Yangtze River [J]. Environmental Geology, 1997, 32(4): 285~ 295.