METAMORPHIC STRUCTURE, WATER ACTIVITIES AND THEIR EVOLUTIONARY FEATURES OF PYRIGARNITE, NORTH OF DABIE MOUNTAINS, EAST OF CHINA
-
摘要: 通过对大别山北部石榴二辉麻粒岩岩相学、矿物地质温压计和热力学计算, 获得4个主要的变质演化阶段的矿物共生组合、温压条件和相应的水活度条件: (1) 榴辉岩相阶段(M1), 以Cpx (含Jd) +Q +Ru +Gt组合为代表的残留矿物, 并呈包体的形式产于石榴石中, t=612~750℃; (2)麻粒岩相阶段(M2), 以Opx+Cpx +Gt+Q +Ti+Mt矿物组合为特征, 其相应的t =837~887℃, p=1.03~1.25GPa, 水活度为0.718~0.799; (3) 角闪岩相阶段(M3), 矿物组合为Cpx +Gt+Amp +Pl+Mt, t=530~660℃, p=0.85~0.95GPa, 其相应的水活度为0.2 3~ 0.2 4;和(4) 低角闪岩相阶段(M4), 其形成的温压条件为t=495℃, p=0.5 6~ 0.70GPa, 相应的水活度为0.11~ 0.13.石榴二辉麻粒岩变质反应、变质结构、矿物组合及其演化, 不仅受控于形成时的温压条件, 而且与形成时体系中水活度的演化有着密切的成因关系.水活度的演化特征表明, 变质流体在变质作用过程中, 对变质反应温度起着一定的缓冲作用.Abstract: The lithofacies research, the calculation of the mineral and geological temperature and pressure, and the thermodynamic calculation are all used in this paper to obtain the mineral association assemblies?, the temperature and pressure conditions and the corresponding water activity conditions that occurred in the four major metamorphic evolutionary stages of the pyrigarnite in the Dabie Mountains: (1) The ecologite facies stage (M1) is characterized by the residual minerals represented by Cpx (jadeitebearing)+Q+Ru+Gt that occur as inclusions in the garnets at t =612-750 ℃. (2) The granulite facies stage (M2) is featured by the mineral assembly consisting of Opx+Cpx+Amp+Gt+Q+Ti+Mt at t =837-887 ℃, p =1.03-1.25?GPa. The water activity in this stage ranges between 0.718-0.799. (3) The amphibolite facies (M3) is characterized by the mineral assembly consisting of Cpx+Gt+Amp+ Pl+Mt at t =530-660 ℃ and p =0.89-0.95?GPa. The water activity in this stage was reduced to 0.23-0.24. (4) The low amphibolite facies (M4) occurred at t =495 ℃ and p =0.56-0.70?GPa. The water activity in this stage was 0.11-0.13. In conclusion, the metamorphic reaction, the metamorphic structure, the mineral assembly and evolution of the pyrigarnite are not only controlled by the temperature and pressure conditions, but also closely related in cause and effect to the evolution of water activity during its formation system. The evolutionary feature of the water activity shows that the metamorphic fluids may have played a buffering role in the metamorphic reaction temperature during the metamorphic stages.
-
Key words:
- metamorphic structure /
- metamorphic reaction /
- water activity /
- granulite /
- Dabie Mountains
-
表 1 大别山北部石榴二辉麻粒岩代表性矿物电子探针分析
Table 1. Elcctron microprobe analysis of representative minerals in pvrigarnite from northern Dabie Mountains
表 2 大别山北部石榴二辉麻粒岩变质温压条件计算结果
Table 2. Metamorphic temperature and pressure of pyrigarnite in northern Dabie Mountains
表 3 不同变质阶段矿物的水活度计算结果
Table 3. Values of water activities of different metamorphic stages
-
[1] 徐树桐, 刘贻灿, 江来利, 等. 大别山的构造格局和演化[M]. 北京: 科学出版社, 1994. [2] 徐树桐, 苏文, 刘贻灿, 等. 大别山东段高压变质岩中的金刚石[J]. 科学通报, 1991, 36(17): 1318~1321. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199117011.htm [3] You Z D, Han Y J, Yang W R, et al. The high-pressure and ultra-high-pressure metamorphic belt in the east Qinling and Dabie Mountains, China[M]. Wuhan: China University of Geosciences Press, 1996. [4] 从柏林, 王清成, 叶凯. 山东威海含柯石英麻粒岩的发现及其意义[J]. 科学通报, 1996, 38: 1235~1238. [5] Su W, Xu S T, Jiang L L, et al. Coesite from quartzjadeitite in the Dabie Mountains, Eastern China[J]. Mineral Mag, 1996, 60: 229~239. [6] Deer W A, Howie R A, Zussman J. Rock-forming minerals (Volume 2A) - single-chain silicates[M]. New York: Longman, 1978. [7] Leake B E. Nomenclature of amphibole[J]. Mineral Mag, 1978, 42: 533~563. doi: 10.1180/minmag.1978.042.324.21 [8] Ellis D J, Green D H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria [J]. Contrib Mineral Petrol, 1979, 71: 13~22. doi: 10.1007/BF00371878 [9] Krogh E J. The garnet-clinopyroxene Fe-Mg geothermometer - a reinter pretation of existing experimental data[J]. Contrib Mineral Petrol, 1988, 99: 44~48. doi: 10.1007/BF00399364 [10] Powell R. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnetclinopyroxene geothermometer revised[J]. J Metamorphic Geo, 1985, 3: 327~342. doi: 10.1111/j.1525-1314.1985.tb00324.x [11] Wells R D. Pyroxene thermometry in simple and complex systems[J]. Contrib Mineral Petrol, 1977, 62: 129~ 139. doi: 10.1007/BF00372872 [12] Wood B J, Banno S. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationship in simple and complex systems[J]. Contrib Mineral Petrol, 1973, 42: 109~ 124. doi: 10.1007/BF00371501 [13] Harley S L, Green D H. Garnet-orthopyroxene barometry for granulites and peridotites. Nature, 1982, 300: 697~701. doi: 10.1038/300697a0 [14] Harley S L. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene[J]. Contrib Mineral Petrol, 1984, 86: 359~373. doi: 10.1007/BF01187140 [15] Paria P, Bhattacharya A, Sen S K. The reaction garnet+clinopyroxene+quartz =2orthopyroxene+anorthite: a potential geobarometer for granulites[J]. Contrib Mineral Petrol, 1988, 99: 126~133. doi: 10.1007/BF00399372 [16] Plyusnina L P. Geotheromometry and geobarometry of plagioclase-hornblende bearing assemblages[J]. Contrib Mineral Petrol, 1982, 80: 140~146. doi: 10.1007/BF00374891 [17] Spear F S. Amphibole-plagioclase equilibria: an empirical model for the relation albite+tremolite+edenite+4quartz[J]. Contrib Mineral Petrol, 1980, 77: 355~364. [18] Hollister L S, Grissom G C, Peters E K, et al. Confirmation of the emprical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons[J]. Amer Mineral, 1987, 72: 231~239. [19] Schmidt M W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the A-l in-hornblende barometer[J]. Contrib Mineral Petrol, 1992, 110: 304~310. doi: 10.1007/BF00310745 [20] Spear F S. An experimental study of hornblende stability and compositional variability in amphibolite[J]. Amer Jour of Science, 1981, 281: 697~734. doi: 10.2475/ajs.281.6.697 [21] Triboulet C I. Controls on p-T-t deformation path from amphibole zonation during progressive metamorphism of basic rocks, Centuary of the River Vilaine, South Brittany France [J]. J Metamorphic Geo, 1988, 6: 117~133. doi: 10.1111/j.1525-1314.1988.tb00412.x