ICP-MS ANALYTICAL RESEARCH INTO 40 TRACE AND ULTRA-TRACE ELEMENTS IN GEOLOGICAL SAMPLES
-
摘要: 以基体匹配的混合标准溶液为外标校正溶液, 采用115In - 10 3 Rh双内标校正系统, 通过单个元素Ca, Cr, Ti, Ba, La, Ce, Pr的氧化物、氢氧化物产率的测定, 计算其等效干扰离子浓度, 并进行校正, 从而有效地抑制了分析信号的漂移、基体效应及多原子离子干扰.针对不同岩性的地质样品, 分别采用酸消解、碱熔融样品制备体系, 在POEMSⅢ上建立了等离子体质谱法同时测定微量、痕量、超痕量元素的分析方法.用于国际地质标样AGV - 1 (安山岩), BH VO - 2 (玄武岩), GSR - 3 (玄武岩), DNC - 1 (橄榄岩), RGM - 1 (流纹岩), G - 2 (花岗岩), JG- 2 (花岗岩) 的分析, 结果令人满意.
-
关键词:
- 等离子体质谱 /
- 校正方法 /
- 微量、痕量、超痕量元素 /
- 地质样品
Abstract: The analytical method of major, trace and ultra-trace elements is applied to geological samples using ICP-MS. In order to minimize matrix effects of inter-elements, the matrix-matched calibration solutions were prepared, simulating the composition of natural rocksobtained from statistically-calculated average values of 20 geological samples. The resulting values are then normalized. Two separate internal standards of 115 In-103Rh are selected to compensate the drift of analytical signals. Polyatomic ion interference is calibrated by measuring the oxides(MO+)and hydroxides(MOH+)with individual element solution for the ratio of MO+/M+ and MOH+/M+ and the concentrations are then equivalently calculated. The proposed method is applied to the analysis of seven standard reference materials. For the most trace elements, the relative errors between this work and the recommend values are greater than 10% and the relative standard deviations are greater than 5%.-
Key words:
- ICPMS /
- calibration technology /
- trace and ultratrace elements /
- geological sample
-
表 1 ICP-MS仪器工作参数
Table 1. Operation parameters for POEMS Ⅲ (ICP-MS)
表 2 基体匹配标准溶液
Table 2. Matrix-matched standard solutions
表 3 样品分析结果
Table 3. Analytical results of samples
-
[1] Jenner G A, Longerich H P, Fryer B J, et al. Inductively coupled plasma_mass spectrometric analysis of geological samples: a critical evaluation based on case studies[J]. Chem Geol, 1990, 83: 105~118. doi: 10.1016/0009-2541(90)90143-U [2] Xie Q, Jain J, Sun M, et al. ICPMS analysis of basalt BIR_1 for trace elements[J]. Geostand Newslett, 1994, 18: 53~63. doi: 10.1111/j.1751-908X.1994.tb00504.x [3] Thompson J J, Houk R S. A study of internal standardisation in inductively coupled plasma mass spectrometry[J]. Appl Spectrosc, 1987, 41: 801~806. doi: 10.1366/0003702874448265 [4] Doherty W. An internal standardization procedure for the determination of yttrium and the rare earth elements in geological materials by inductively coupled plasma_mass spectrometry[J]. Spectrochim Acta, 1989, 44B: 263~280. [5] Cheatham M M, Sangrey W F, White W M. Sources of error in external calibration ICPMS analysis of geological samples and an improved non_liner drift correction procedure[J]. Spectrochim Acta, 1993, 48B: 487~506. [6] Schonberg G. Simultaneous determination of thirty_seven trace elements in twenty_eight international rock standardsby ICPMS[J]. Geostandards Newsletter, 1993, 17: 81~97. doi: 10.1111/j.1751-908X.1993.tb00122.x [7] Eggin S M, Woodhead J D, Kinslet L, et al. Sample method for the simultaneous and precise analysis of 40 or more trace elements in geological samples by ICP_MS using enriched isotope internal standardization[J]. Chem Geol, 1996, 134: 311~326. [8] 刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25: 532~558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.003.htm [9] Govindaraju K. 1994 compilation of working values and sample description for 383 geostandards[J]. Geostandards Newsletter, 1994, 18(special issue): 1~158.