METALLOGENIC SIGNIFICANCE OF ORGANISMS AND ORGANIC MATTERS IN LOW TEMPERATURE MINERALIZATION SYSTEM
-
摘要: 在低温热液型矿床的形成过程中, 生物和有机质发挥了重要的成矿作用.这种作用可以归纳为直接和间接两种.生物及有机质直接参与成矿作用的意义在于: 在沉积岩主岩的同生沉积阶段形成矿源层, 在成矿物质活化迁移过程中形成含矿流体, 在成矿元素的沉淀阶段富集形成矿床; 生物及有机质间接成矿意义是指有机质的成熟演变作用及其产物可以揭示成矿过程, 反映低温热液成矿机理和成矿条件.Abstract: During the mineralization of the low temperature hydrothermal deposits, organisms and organic matters play an important metallogenic role deducted as two major categories: direct and indirect metallogenic roles. The direct metallogenic role of organisms and organic matters means the formation of source beds in the contemporaneous sedimentary stage, the formation of ore bearing fluids in the activation migration of mineralizing materials, and the formation of mineral deposits derived from the accumulation of mineralizing elements during the precipitation of mineralizing materials. The indirect metallogenic role refers to the fact that the maturation evolution of organic matters and relative organic products may reveal the mineralization process, reflecting the low temperature hydrothermal metallogenic mechanism and condition.
-
[1] 卢焕章, 池国祥, 王中刚. 典型金属矿床成因及其构造环境[M]. 北京: 地质出版社, 1995.148. [2] Patrick L, Andrew P. Organic matter in hydrothermal ore deposits[A]. In: Hubest L B, ed. Geochemistry of hydrothermal ore deposits[C]. 3rd ed. [s. l. ]: John Wiley & Sons, 1997.613~645. [3] Disnar J R, Sureau J F. Organic matter in ore genesis: progress and perspectives[J]. Org Geochem, 1990, 16: 677~599. doi: 10.1016/0146-6380(90)90109-D [4] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin, Heidelberg: Springer~Verlag, 1984. [5] 胡明安, 罗学常, 高广立. 有机质成熟异常及生物标志物的矿床学意义[M]. 武汉: 中国地质大学出版社, 1998. [6] 王启军, 陈建渝. 油气地球化学[M]. 武汉: 中国地质大学出版社, 1988. [7] Hu M A, Disnar J R, Sureau J F. Organic geochemical indicators of biological sulphate reduction in early diagenetic Zn~Pb mineralization: the Bois - Madawe deposit (Gard, France)[J]. Applied Geochemistry, 1995, 10(4): 419~435. doi: 10.1016/0883-2927(95)00015-C [8] Trudinger P A, Chambers L A, Smith J W. Low~temperature sulphade reduction: biological versus abiological[J]. Can J Earth Sci, 1985, 22: 1910~1918. doi: 10.1139/e85-207 [9] 胡明安. 与细菌活动有关的成矿作用——两个欧洲铅锌矿床实例[J]. 矿床地质, 1997, 16(1): 61~70. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ701.007.htm [10] Philp R P. Fuel biobarkers: applications and spectra [M]. [s. l. ]: Elsevier, 1985.55. [11] Petra R. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J]. Nature, 1994, 372: 455~458. doi: 10.1038/372455a0 [12] Barten P B Jr. Possible role of organic matter in the precipitation of the Mississippi Valley ores[J]. Econ Geol, 1967, 3: 371~378. [13] Rye D M, Williams N. Studies of the base metal sulfide deposits at MrArthur River, Northern Territory, Australia: Ⅲ. The stable isotope geochemistry of the H.Y. C, Ridge and Cooley deposits[J]. Econ Geol, 1981, 76: 1~26. doi: 10.2113/gsecongeo.76.1.1 [14] Powell T G, Macpueen R W. Precipitation of sulfide ore and organic matter: sulfate reaction at Pine Piont[J]. Can Sci Reprint Series, 1984, 224(6): 63~66. [15] Joel S L. Organic matter and thermochemical sulfate, reduction in the Viburnum Trend, Southeast Missour[J]. Econ Geol, 1990, 85: 622~632. doi: 10.2113/gsecongeo.85.3.622 [16] Forbes P, Landais P, Bertr P, et al. Chemical transformations of type-Ⅲ organic matter associated with the Akouta uranium deposit (Niger): geological implications[J]. Chemical Geology, 1988, 71: 267~282 doi: 10.1016/0009-2541(88)90054-X
点击查看大图
计量
- 文章访问数: 3711
- HTML全文浏览量: 888
- PDF下载量: 8
- 被引次数: 0