Genetic Significances of Olivine from Magmatic Sulfide Ore-Bearing Intrusions in Central Zone of Emeishan Large Igneous Province
-
摘要: 峨眉火成岩省内带出露数十个含Ni-Cu-铂族元素(PGE)硫化物矿床(或矿化)的镁铁质-超镁铁质侵入岩体.根据铂族元素(PGE)含量的不同, 这些岩浆硫化物矿床可分为Ni-Cu型(如力马河和清水河)、Ni-Cu-PGE型(如清矿山和黄草坪)和PGE型(如金宝山和杨合武).不同类型含矿岩体的橄榄石电子探针分析表明, 除了清矿山岩体少数几个橄榄石晶体属于镁橄榄石外(Fo90.1~Fo93.1), 其余均为贵橄榄石(Fo76.8~Fo89.6).不同矿化类型的岩体的橄榄石成分差异明显.Ni-Cu型硫化物含矿岩体的橄榄石Fo为77~87, Ni含量变化范围为(976~2 176)×10-6.Ni-Cu-PGE型硫化物含矿岩体的橄榄石Fo为80~86, Ni含量范围为(1 024~2 543)×10-6.PGE型硫化物含矿岩体的橄榄石Fo为78~84, Ni含量在(776~1 755)×10-6之间变化.清矿山Ni-Cu-PGE型硫化物含矿岩体橄榄石具有高Fo(最高达93.1)和CaO含量(0.245%~1.14%)、以及非常低的Ni(266×10-6)的特征, 可能是同化混染作用的结果.利用力马河岩体最高Fo含量的橄榄石成分计算表明, 母岩浆是高镁苦橄玄武质岩浆.橄榄石分离结晶和硫化物熔离模拟显示: Ni-Cu型矿化侵入体母岩浆经历了最广泛的硫化物熔离(~0.1%), Ni-Cu-PGE型侵入体次之, 大约为0.06%, 而PGE型侵入体母岩浆硫化物熔离程度最低(~0.02%).早期结晶的橄榄石晶体与间隙硅酸盐熔浆之间再平衡过程是橄榄石成分变化的原因.Abstract: Several mafic-ultramafic intrusions hosting economic Ni-Cu-(PGE) sulfide deposits and sub-economic sulfide mineralization occur in the central zone of the Emeishan large igneous province (LIP). These magmatic sulfide deposits can be divided into the Ni-Cu type (e.g. Limahe and Qingshuihe), Ni-Cu-PGE type (e.g. Qingkuangshan and Huangcaoping) and PGE type (e.g. Jinbaoshan and Yanghewu), according to the variations in the content of platinum-group elements (PGE). Electron microprobe analyses of olivine show that almost all olivine crystals are chrysolite (Fo76.8-Fo89.6), with an exception of some grains from the Qingkuangshan intrusion which are forsterite (Fo90.1-Fo93.1). The compositions of olivine are distinct between intrusions containing different types of sulfides. For the Ni-Cu sulfide-bearing intrusions, the Fo and Ni contents of olivine range from 77 to 87 and from 976×10-6 to 2 176×10-6, respectively. Olivine crystals in the Ni-Cu-PGE sulfide-bearing intrusions have Fo numbers varying from 80 to 86 and (1 024-2 543)×10-6 Ni. The PGE sulfide-bearing intrusions contain olivine crystals with Fo numbers ranging from 78 to 84 and Ni contents of 776×10-6 to 1 755×10-6. The olivine from the Qingkuangshan intrusion, which contains economic Ni-Cu-PGE sulfides, is distinct from others by its high Fo numbers (up to 93.1) and CaO content (0.24%-1.14%) and extremely low Ni (266×10-6). The Ni concentrations and Mg# of parental magma have been estimated by using the compositions of most Fo-rich olivine crystals and the results show a high-MgO picritic-basaltic magma. Modeling of olivine fractional crystallization and sulfide segregation show that the parental magma for the Ni-Cu type mineralized intrusions has experienced the most extensive sulfide segregation (~0.1%). For the Ni-Cu-PGE type intrusions, it is ~0.06%, and for the PGE type intrusions it is ~0.02%. Re-equilibration of the early formed olivine crystals with the trapped liquid can account for the variations of olivine compositions.
-
图 1 峨眉火成岩省内带镁铁质—超镁铁质含矿岩体分布简图(据宋谢炎等,2005改绘)
Ⅰ.含Ni-Cu硫化物矿化岩体:2.黄草坪;3.丹桂;5.黄草;8.垭口;12.力马河;13.黄土坡;18.纳拉箐;19.水平;20.拱青山;Ⅱ.含PGE硫化物矿化岩体:7.大槽;14.杨合武;21.朱布;23.猛林沟;25.迎风;26.金宝山;Ⅲ.含Ni-Cu-PGE硫化物岩体:9.清水河;15.清矿山;16.核桃树;Ⅳ.含巨型V-Ti磁铁矿矿床岩体:1.太和;4.白马;10.红格;17.攀枝花;Ⅴ.含PGE矿化和V-Ti磁铁矿岩体:6.新街;11.中十沟;22.热水塘;24.安益
Fig. 1. Simplified geological map of the inner Emeishan large igneous province showing the distribution of mineralized mafic-ultramafic intrusions
图 2 峨眉火成岩省内带典型硫化物含矿岩体地质图与剖面图(a、b、c据Song et al., 2008; d据姚家栋, 1988)
a.力马河岩体;b.清水河岩体地质图和剖面图;c.清矿山岩体地质图;d.杨合武岩体地质图和剖面图.1.中元古代变质岩系;2.橄榄岩;3.橄辉岩;4.辉石岩;5.含长辉石岩;6.辉长岩脉;7.角岩;8.推测断层
Fig. 2. Geological maps and cross sections of typical sulfide mineralized mafic-ultramafic intrusions in the central zone of ELIP
表 1 峨眉火成岩省内带铜镍硫化物含矿侵入体橄榄石氧化物平均成分(%)、Ni含量(10-6)
Table 1. Olivine compositions of selected samples from different intrusions
矿化类型 Ni-Cu型 Ni-Cu-PGE型 PGE型 岩体名称 力马河 清水河 清矿山 黄草坪 杨合武 金宝山 样号 SL05-5 SL05-7 SL05-9 SL05-10 SQS05-3 SQS05-4 SQ05-4 SQ05-8 SQ05-9 SH05-3 SH05-4 SH05-11 SY05-2 SY05-3 SY05-4 SY05-7 JB-19 岩性 辉长岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 浸染状矿石 浸染状矿石 浸染状矿石 辉长岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 橄辉岩 点数 10 1 6 7 3 1 7 7 8 10 6 13 3 10 17 11 6 SiO2 38.9 38.7 38.8 39.2 39.6 39.2 39.9 39.9 39.8 38.8 38.9 39.1 39.0 38.8 38.8 38.6 39.2 TiO2 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 Al2O3 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.03 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 FeO 16.6 17.9 18.3 16.9 14.7 16.0 12.2 13.0 11.6 17.2 16.7 14.9 19.3 19.8 19.2 20.6 15.5 MnO 0.21 0.24 0.23 0.21 0.20 0.20 0.18 0.20 0.19 0.22 0.21 0.19 0.27 0.25 0.24 0.29 0.22 MgO 43.4 42.3 42.0 43.3 44.7 43.9 46.8 46.4 47.2 42.6 43.0 44.4 41.6 41.1 41.6 40.4 44.2 CaO 0.15 0.22 0.15 0.16 0.20 0.21 0.45 0.35 0.43 0.04 0.08 0.06 0.09 0.12 0.07 0.10 0.14 Na2O 0.00 0.01 0.01 0.01 0.01 0.02 0.04 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.00 K2O 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Cr2O3 0.03 0.03 0.03 0.03 0.05 0.04 0.01 0.07 0.03 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 NiO 0.18 0.17 0.15 0.16 0.24 0.22 0.14 0.15 0.13 0.18 0.29 0.28 0.14 0.14 0.15 0.12 0.21 Total 99.6 99.6 99.8 100.0 99.7 99.8 99.6 100.1 99.5 99.1 99.2 99.0 100.4 100.2 100.2 100.2 99.4 镁橄榄石牌号(Fo) 80.3~84.6 80.8 79.3~82.6 76.8~86.5 83.6~85.0 83.1 84.6~90.8 86.1~86.6 85.5~93.1 80.2~82.8 80.2~84.4 83.2~85.5 78.9~79.7 78.4~79.3 78.8~79.8 77.6~78.0 83.2~84.1 Ni含量(10-6) 1 255~1 601 1 368 971~1 491 1 018~1 508 1 704~2 166 1 699 380~2 348 1 119~1 338 264~1 300 1 015~1 624 1 867~2 526 1 998~2 513 1 033~1 125 658~1 256 1 033~1 359 777~1 016 1 444~1 749 以4个氧为基数的阳离子数 Si4+ 0.991 0.992 0.994 0.994 0.998 0.994 0.991 0.994 0.993 0.996 0.994 0.993 0.995 0.995 0.994 0.996 0.993 Ti4+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Al3+ 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 Fe2+ 0.354 0.383 0.393 0.360 0.310 0.338 0.232 0.270 0.242 0.370 0.358 0.318 0.412 0.424 0.412 0.444 0.333 Mn2+ 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.004 0.006 0.006 0.005 0.006 0.005 Mg2+ 1.649 1.617 1.605 1.638 1.676 1.658 1.763 1.722 1.752 1.627 1.639 1.682 1.585 1.572 1.587 1.551 1.666 Ca2+ 0.004 0.006 0.004 0.004 0.005 0.006 0.014 0.009 0.012 0.001 0.002 0.002 0.002 0.003 0.002 0.003 0.004 Na+ 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 K+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr3+ 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ni2+ 0.004 0.004 0.003 0.003 0.005 0.004 0.002 0.003 0.003 0.004 0.006 0.006 0.003 0.003 0.003 0.002 0.004 Total 3.008 3.008 3.006 3.005 3.001 3.006 3.009 3.006 3.007 3.004 3.006 3.007 3.004 3.004 3.005 3.004 3.006 注:1.橄榄石电子探针分析由宋谢炎研究员在澳大利亚Tasmania大学CODES研究中心电子探针室完成.分析仪器为Cameca SX-50电子探针.氧化物分析条件为:加速电压15 kV,电流10 nA,分析束斑直径10 μm,计数时间为50 s,用自然矿物San Carlos橄榄石SCOL校正;Ni分析条件为:加速电压15 kV,电流100 nA,分析束斑直径20 μm,计数时间为100 s;2.由于数据有120组,同一样品中橄榄石成分变化不大(<2%),因此氧化物含量采用平均值. -
Barnes, S.J., 1986. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib. Mineral. Petrol. , 93(4): 524-531. doi: 10.1007/BF00371722 Barnes, S.J., Maier, W.D., 1999. The fractionation of Ni, Cu and the nobel metals in silicate and sulfide liquids. In: Keays, R.R., Lesher, C.M., Lightfoot, P.C., eds., Dynamic processes in magmatic ore deposits and their application in mineral exploration. Geological Association of Canada Short Course Notes, 13: 69-106. Borghini, G., Rampone, E., 2007. Postcumulus processes in oceanic-type olivine-rich cumulates: the role of trapped melt crystallization versus melt/rock interaction. Contributions to Mineralogy and Petrology, 154(6): 619-633. doi: 10.1007/s00410-007-0217-5 Campbell, I.H., Naldrett, A.J., 1979. The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology, 74(6): 1503-1506. doi: 10.2113/gsecongeo.74.6.1503 Cawthorn, R.G., 1996. Re-evaluation of magma compositions and processes in the uppermost critical zone of the Bushveld complex. Mineralogical Magazine, 60(398): 131-148. doi: 10.1180/minmag.1996.060.398.09 Cawthorn, R.G., Sander, B.K., Jones, I.M., 1992. Evidence for the trapped liquid shift effect in the Mount Ayliff intrusion, South Africa. Contributions to Mineralogy and Petrology, 111(2): 194-202. doi: 10.1007/BF00348951 Chai, G., Naldrett, A.J., 1992. The Jinchuan ultramafic intrusion-cumulate of a high-Mg basaltic magma. Journal of Petrology, 33(2): 277-303. doi: 10.1093/petrology/33.2.277 Chung, S.L., Jahn, B.M., 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892. doi:10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2 Danyushevsky, L.V., McNeill, A.W., Sobolev, A.V., 2002. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chemical Geology, 183(1-4): 5-24. doi: 10.1016/S0009-2541(01)00369-2 Duke, J.M., Naldrett, A.J., 1978. A numerical model of the fractionation of olivine and molten sulfide from komatiite magma. Earth and Planetary Science Letters, 39(2): 255-266. doi:10.1016/0012-821X (78)90201-7 Gao, Z.M., Zhang, Q., Tao, Y., et al., 2004. An analysis of the mineralization connected with Emeishan mantle plume. Acta Mineralogica Sinica, 24(2): 99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200402001.htm Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes Ⅳ. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119(2-3): 197-212. doi: 10.1007/BF00307281 Guo, F., Fan, W.M., Wang, Y.J., et al., 2004. When did the Emeishan mantle plume activity start? Geochronological and geochemical evidence from ultramafic-mafic dikes in southwestern China. International Geology Review, 46(3): 226-234. doi: 10.2747/0020-6814.46.3.226 He, B., Xu, Y.G., Chung, S.L., et al., 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391-405. doi: 10.1016/S0012-821X(03)00323-6 Hu, R.Z., Tao, Y., Zhong, H., et al., 2005. Mineralization systems of a mantle plume: a case study from the Emeishan igneous province, Southwest China. Earth Science Frontiers, 12(1): 42-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200501005.htm Kerr, A.C., 2004. Oceanic plateaus. In: Holland, H.D., Turekian, K.K., eds., Treatise on geochemistry. Elsevier, Amsterdam. 3: 537-565. doi: 10.1016/B0-08-043751-6/03033-4 Le Bas, M.J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41(10): 1467-1470. doi: 10.1093/petrology/41.10.1467 Li, C.S., Naldrett, A.J., 1999. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine with sulfide and silicate liquids. Lithos, 47(1-2): 1-31. doi: 10.1016/S0024-4937(99)00005-5 Li, C.S., Naldrett, A.J., Ripley, E.M., 2007. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic/ultramafic intrusions: principles, modeling and examples from Voisey's bay. Earth Science Frontiers, 14(5): 177-183. doi: 10.1016/S1872-5791(07)60043-8 Liu, C.J., Zeng, X.W., Jin, J.T., et al., 1988. Mafic-ultramafic intrusions in Kang-Dian region. Chongqing Publishing House, Chongqing, 52-88 (in Chinese). Lo, C.H., Chung, S.L., Lee, T.Y., et al., 2002. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters, 198(3-4): 449-458. doi: 10.1016/S0012-821X(02)00535-6 Naldrett, A.J., 1989. Magmatic sulfide deposits. Springer, New York, 137-140. Peach, C.L., Mathez, E.A., Keays, R.R., 1990. Sulfide-melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S Roeder, P.L., Emslie, R.F., 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289. doi: 10.1007/BF00371276 Song, X.Y., Zhang, C.J., Hu, R.Z., et al., 2005. Genetic links of magmatic deposits in the Emeishan large igneous province with dynamics of mantle plume. Journal of Mineralogy and Petrology, 25(4): 35-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200504006.htm Song, X.Y., Zhou, M.F., Cao, Z.M., 2004. Genetic relationships between base-metal sulfides and platinum-group minerals in the Yangliuping Ni-Cu-(PGE) sulfide deposit, southwestern China. Canadian Mineralogist, 42: 469-483. doi: 10.2113/gscanmin.42.2.469 Song, X.Y., Zhou, M.F., Cao, Z.M., et al., 2003. Ni-Cu-(PGE) magmatic sulfide deposits in the Yangliuping area, Permian Emeishan igneous province, SW China. Mineralium Deposita, 38(7): 831-843. doi: 10.1007/3-540-27946-6 Song, X.Y., Zhou, M.F., Hou, Z.Q., et al., 2001. Geochemical constraints on the mantle source of the Upper Permian Emeishan continental flood basalts, southwestern China. International Geology Review, 42(3): 213-225. doi: 10.1080/00206810109465009 Song, X.Y., Zhou, M.F., Tao, Y., et al., 2008. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China. Chemical Geology, 252(1-2): 38-49. doi: 10.1016/j.chemgeo.2008.04.005 Takahashi, E., 1978. Partitioning of Ni2+, Co2+, Fe2+, Mn2+, and Mg2+ between olivine and silicate melts: compositional dependence of partition coefficent. Geochimica et Cosmochimica Acta, 42(12): 1829-1844. doi: 10.1016/0016-7037(78)90238-7 Tao, Y., Gao, Z.M., Luo, T.Y., et al., 2002. Inversion of primary magma composition for Jinbaoshan ultramafic intrusion, Yunnan. Acta Petrologica Sinica, 18(1): 70-82 (in Chinese with English abstract). http://www.oalib.com/paper/1470492 Tao, Y., Hu, R.Z., Qi, L., et al., 2007. Geochemical characteristics and metallogenesis of the Limahe mafic-ultramafic intrusion, Sichuan. Acta Petrologica Sinica, 23(11): 2785-2800 (in Chinese with English abstract). http://www.oalib.com/paper/1473120 Tao, Y., Li, C.S., Hu, R.Z., et al., 2007. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan large igneous province, SW China. Contributions to Mineralogy and Petrology, 153(3): 321-338. doi: 10.1007/s00410-006-0149-5 Thompson, R.N., Gibson, S.A., 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 407(6803): 502-506. doi: 10.1038/35035058 Wang, C.Y., Zhou, M.F., 2006. Genesis of the Permian Baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China. Mineralium Deposita, 41(8): 771-783. doi: 10.1007/s00126-006-0094-2 Wang, C.Y., Zhou, M.F., Keays, R.R., 2006. Geochemical constraints on the origin of the Permian Baimazhai mafic-ultramafic intrusion, SW China. Contributions to Miberalogy and Petrology, 152(3): 309-321. doi: 10.1007/s00410-006-0103-6 Xiao, L., Xu, Y.G., Mei, H.J., et al., 2003. Late Permian flood basalts at Jinping area and its relation to Emei mantle plume: geochemical evidences. Acta Petrologica Sinica, 19(1): 38-48 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=7423264 Xu, Y.G., Chung, S.L., 2001. The Emeishan large igneous province: evidence for mantle plume activity and melting conditions. Geochimica, 30(1): 1-9 (in Chinese with English abstract). http://www.researchgate.net/profile/Yi-Gang_Xu/publication/284485958_The_Emeishan_large_igneous_province_Evidence_for_mantle_plume_activity_and_melting_conditions/links/569e386508aed27a703274ce.pdf Xu, Y.G., He, B., Chung, S.L., et al., 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32: 917-920. doi: 10.1130/G20602.1 Yao, J.D., 1988. Genesis of magmatic Cu-(Pt)-Ni sulfide deposit in the Xichang region. Chongqing Publishing House, Chongqing, 11-61 (in Chinese). Zhang, Y.X., Luo, Y.N., Yang, C.X., 1988. Panxi rift. Geological Publishing House, Beijing, 142-184 (in Chinese). Zhang, Z.C., Mao, J.W., Wang, F.S., et al., 2005. Mantle plume activity and melting conditions: evidence from olivines in picritic-komatiitic rocks from the Emeishan large igneous province, southwestern China. Episodes, 28(3): 171-176. doi: 10.18814/epiiugs/2005/v28i3/003 Zhang, Z.C., Wang, F.S., 2003. Sr, Nd and Pb isotopic characteristics of Emeishan basalt province and discussion on their source region. Earth Science—Journal of China University of Geosciences, 28(4): 431-439 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200304012.htm Zhang, Z.C., Wang, F.S., Fan, W.M., et al., 2001. A discussion on some problems concerning the study of the Emeishan basalts. Acta Petrologica et Mineralogica, 20(3): 239-246 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200103004.htm Zhong, H., Yao, Y., Prevec, S.A., et al., 2004. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrusion in SW China. Chemical Geology, 203(3-4): 237-252. doi: 10.1016/j.chemgeo.2003.10.008 Zhong, H., Zhu, W.G., 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Mineralium Deposita, 41(6): 599-606. doi: 10.1007/s00126-006-0081-7 Zhou, M.F., Arndt, N.T., Malpas, J., et al., 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos, 103(3-4): 352-368. doi: 10.1016/j.lithos.2007.10.006 Zhou, M.F., Malpas. J., Song, X.Y., et al., 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters, 196(3-4): 113-122. doi: 10.1016/S0012-821X(01)00608-2 Zhou, M.F., Robinson, P.T., Lesher, C.M., et al., 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. doi: 10.1093/petrology/egi054 Zhu, D., Tao, Y., Luo, T.Y., et al., 2003. Geochemical and petrological characteristics of mafic and ultra-mafic intrusions in Jinbaoshan, Yunnan. Acta Mineralogica Sinica, 23(1): 63-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200301010.htm 高振敏, 张乾, 陶琰, 等, 2004. 峨眉山地幔柱成矿作用分析. 矿物学报, 24(2): 99-104. doi: 10.3321/j.issn:1000-4734.2004.02.001 胡瑞忠, 陶琰, 钟宏, 等, 2005. 地幔柱成矿系统: 以峨眉山地幔柱为例. 地学前缘, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007 刘朝基, 曾绪伟, 金久堂, 等, 1988. 康滇地区基性超基性岩. 重庆: 重庆出版社, 52-88. 宋谢炎, 张成江, 胡瑞忠, 等, 2005. 峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系. 矿物岩石, 25(4): 35-44. doi: 10.3969/j.issn.1001-6872.2005.04.007 陶琰, 高振敏, 罗泰义, 等, 2002. 云南金宝山超镁铁岩原始岩浆成分反演. 岩石学报, 18(1): 70-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200201007.htm 陶琰, 胡瑞忠, 漆亮, 等, 2007. 四川力马河镁铁-超镁铁质岩体的地球化学特征及成岩成矿分析. 岩石学报, 23(11): 2785-2800. doi: 10.3969/j.issn.1000-0569.2007.11.010 肖龙, 徐义刚, 梅厚均, 等, 2003. 云南金平晚二叠纪玄武岩特征及其与峨眉地幔柱关系——地球化学证据. 岩石学报, 19(1): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301004.htm 徐义刚, 钟孙霖, 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件. 地球化学, 30(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101001.htm 姚家栋, 1988. 西昌地区硫化铜(铂)镍矿床成因. 重庆: 重庆出版社, 11-61. 张云湘, 骆耀南, 杨崇喜, 1988. 攀西裂谷. 北京: 地质出版社, 142-184. 张招崇, 王福生, 2003. 峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨. 地球科学——中国地质大学学报, 28(4): 431-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304012.htm 张招崇, 王福生, 范蔚茗, 等, 2001. 峨眉山玄武岩研究中的一些问题的讨论. 岩石矿物学杂志, 20(3): 239-246. doi: 10.3969/j.issn.1000-6524.2001.03.005 朱丹, 陶琰, 罗泰义, 等, 2003. 云南金宝山镁铁-超镁铁岩的地球化学特征及成因. 矿物学报, 23(1): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200301010.htm