• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景

    付乐兵 魏俊浩 魏启荣 谭俊 李艳军 李闫华 王明志 蒋永建

    付乐兵, 魏俊浩, 魏启荣, 谭俊, 李艳军, 李闫华, 王明志, 蒋永建, 2010. 内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景. 地球科学, 35(6): 933-946. doi: 10.3799/dqkx.2010.108
    引用本文: 付乐兵, 魏俊浩, 魏启荣, 谭俊, 李艳军, 李闫华, 王明志, 蒋永建, 2010. 内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景. 地球科学, 35(6): 933-946. doi: 10.3799/dqkx.2010.108
    FU Le-bing, WEI Jun-hao, WEI Qi-rong, TAN Jun, LI Yan-jun, LI Yan-hua, WANG Ming-zhi, JIANG Yong-jian, 2010. Petrogenesis and Geodynamic Setting of Late Triassic Dykes of Jinchanggouliang, Eastern Inner Mongolia. Earth Science, 35(6): 933-946. doi: 10.3799/dqkx.2010.108
    Citation: FU Le-bing, WEI Jun-hao, WEI Qi-rong, TAN Jun, LI Yan-jun, LI Yan-hua, WANG Ming-zhi, JIANG Yong-jian, 2010. Petrogenesis and Geodynamic Setting of Late Triassic Dykes of Jinchanggouliang, Eastern Inner Mongolia. Earth Science, 35(6): 933-946. doi: 10.3799/dqkx.2010.108

    内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景

    doi: 10.3799/dqkx.2010.108
    基金项目: 

    教育部创新团队发展计划 IRT0755

    全国危机矿山接替资源找矿项目 200714010

    中国地质大学(武汉)研究生学术探索基金 CUGYJS0812

    详细信息
      作者简介:

      付乐兵(1984-), 男, 在读博士研究生, 主要从事矿床地球化学研究工作.E-mail: fulebing1212@126.com

    • 中图分类号: P597

    Petrogenesis and Geodynamic Setting of Late Triassic Dykes of Jinchanggouliang, Eastern Inner Mongolia

    • 摘要: 金厂沟梁位于张家口-赤峰-朝阳金矿集区东端, 区内发育大量规模不等的脉岩, 岩性以闪长岩、闪长玢岩为主.对其进行了锆石U-Pb年龄、主微量元素及Sr-Nd同位素分析.脉岩锆石LA-ICP-MS U-Pb年龄值可分为三组: 2 458~2 524 Ma、253±6 Ma(MSWD=3.0)及228±1 Ma(MSWD=0.26).2.5 Ga锆石反映成岩过程中有古老地壳物质参与, 253 Ma锆石可能与古亚洲洋闭合时的岩浆事件有关, 228 Ma则为脉岩的形成年龄.脉岩SiO2(51.22%~68.48%)、MgO(1.35%~8.13%)含量变化较大, 且具有高Na2O+K2O、Al2O3及低的TiO2、P2O5含量等特征.岩石LREE及LILE富集, HFSE亏损.脉岩(87Sr/86Sr)i比值较为一致(0.704 95~0.705 92), 而εNd(t)(-0.2~-9.5)及T2DM(1.02~1.77 Ga)值变化范围较大.主微量元素及同位素研究结果表明: 部分熔融的岩石圈地幔熔体底侵到壳幔边界, 诱发古老地壳物质的部分熔融, 随后发生的幔源熔体与壳源熔体的混合是脉岩最可能的源区过程.主微量元素构造判别图解指示岩石形成于陆弧向板内演化的构造环境; 结合区域上同时代脉岩群、碱性岩带及A2型花岗岩的侵位, 认为晚三叠世华北板块北缘已完成与蒙古弧地体的碰撞并进入造山后伸展阶段.

       

    • 图  1  赤峰-张家口构造位置图(a)(据Hart et al., 2002修改)及金厂沟梁-二道沟地区地质简图(b)(据苗来成等,2003修改)

      1.太古宙小塔子沟组片麻岩;2.西台子二长花岗岩;3.娄上辉石闪长岩;4.对面沟岩体边缘相;5.对面沟岩体中心相;6.中生代火山岩;7.第四系;8.脉岩;9.金矿脉;10.断裂;11.金矿点;12.采样位置;ZJK.张家口金矿集中区;JD.冀东金矿集中区;CF.赤峰金矿集中区

      Fig.  1.  Tectonic location of Zhangjiakou-Chifeng (a) and geological map of Jinchanggouliang-Erdaogou area (b)

      图  2  金厂沟梁成矿前闪长岩(GSJ2)锆石LA-ICP-MS U-Pb年龄谐和图(a)及球粒陨石标准化稀土配分图解(b)

      加权平均年龄为去掉2、5、8、11、13、14和16号测点外9粒岩浆锆石的加权结果;球粒陨石值据Sun and McDonough (1989)

      Fig.  2.  Concordia plots for zircons of dioritic dike (GSJ2) from Jinchanggouliang (a) and chondrite normalized REE patterns (b)

      图  3  脉岩的Nb/Y-Zr/TiO2(据Winchester and Floyd, 1976)(a)和Ta/Yb-Th/Yb(据Pearce, 1983)(b)判别图解

      空心圆圈和空心三角为本文数据;实心圆圈和实心三角数据陈军强等(2005);喀喇沁闪长岩数据韩庆军等(2000)

      Fig.  3.  Nb/Y-Zr/TiO2 (a) and Ta/Yb-Th/Yb (b) diagrams of dikes

      图  4  脉岩原始地幔标准化微量元素蛛网图(a)及球粒陨石标准化稀土配分曲线(b)(原始地幔和球粒陨石标准据Sun and McDonough, 1989)

      空心圆圈和空心三角为本文数据;金厂沟梁脉岩(陈军强等,2005)为6组数据平均值;柴胡栏子麻粒岩包体为佘宏全等(2006),12组数据平均值;喀喇沁堆积杂岩为Shao et al.(1999),22组数据平均值;喀喇沁闪长岩数据韩庆军等(2000)

      Fig.  4.  Primitive mantle normalized trace element distributions (a) and chondrite normalized REE patterns (b)

      图  5  金厂沟梁脉岩(87Sr/86Sr)i-εNd(t)图解

      数据来源同图 3t=228 Ma.北区、南区及过渡区范围据周新华等(2001),分别代表西拉木伦河以北、赤峰开源断裂以南及两者之间的中生代火山岩同位素组成;华北克拉通北缘早古生代金伯利岩和地幔橄榄岩据郑建平和路凤香(1999)张宏福和杨岳衡(2007);汉诺坝二辉麻粒岩包体据张国辉等(1998).图中带短横线曲线为岩浆混合模拟趋势线,短横线代表 5%增量.混合端元参数如下:Sr、Nd、87Sr/86Sr、εNd(t)在岩石圈地幔中分别为630×10-6,24×10-6,0.705,0.59(陈斌等,2008; Zhang et al., 2009),下地壳中分别为300×10-6,24×10-6,0.710,-30 (Jahn et al., 1999)

      Fig.  5.  (87Sr/86Sr)i-εNd(t) diagrams of dikes from Jinchanggouliang

      图  6  脉岩Hf/3-Th-Ta(据Wood et al., 1979)(a)及Zr-Zr/Y(据Pearce and Norry, 1979)(b)构造判别图解

      数据来源同图 3;N-MORB.N型洋中脊玄武岩;E-MORB+WPB.E型洋中脊玄武岩和板内拉斑玄武岩;WPB.板内碱性玄武岩;CAB.岛弧钙碱性玄武岩;IAT.岛弧拉板玄武岩

      Fig.  6.  Hf/3-Th-Ta (a) and Zr-Zr/Y (b) diagrams to describe tectonic location of dikes

      表  1  金厂沟梁脉岩(GSJ2)锆石U-Pb和全岩Sr-Nd同位素分析结果

      Table  1.   LA-ICP-MS zircon U-Pb dating data and Sr-Nd isotopic compositions of dikes (GSJ2) from Jinchanggouliang

      测试点号
      Th
      (10-6)
      U
      (10-6)
      Th/U U-Th-Pb同位素比值 年龄(Ma)
      207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ
      GSJ2-1 322 359 0.90 0.053 24 0.001 49 0.264 56 0.009 14 0.036 16 0.000 35 0.014 81 0.000 21 339 63 238 7 229 2 297 4
      GSJ2-2 165 178 0.92 0.059 01 0.007 80 0.314 32 0.040 53 0.039 11 0.000 85 0.016 44 0.000 66 567 291 278 31 247 5 330 13
      GSJ2-3 392 510 0.77 0.053 87 0.001 35 0.268 06 0.007 97 0.036 02 0.000 35 0.013 36 0.000 54 366 57 241 6 228 2 268 11
      GSJ2-4 295 302 0.98 0.054 38 0.001 68 0.271 32 0.008 95 0.036 06 0.000 37 0.013 57 0.000 25 387 69 244 7 228 2 272 5
      GSJ2-5 118 269 0.44 0.053 00 0.003 51 0.298 22 0.019 22 0.041 14 0.000 75 0.015 98 0.000 79 329 151 265 15 260 5 320 16
      GSJ2-6 153 212 0.72 0.053 71 0.001 83 0.263 37 0.008 68 0.035 75 0.000 36 0.012 04 0.000 25 359 77 237 7 226 2 242 5
      GSJ2-7 141 180 0.78 0.052 57 0.001 93 0.260 30 0.010 02 0.035 89 0.000 43 0.011 70 0.000 26 310 84 235 8 227 3 235 5
      GSJ2-8 371 612 0.61 0.166 67 0.001 21 9.347 13 0.146 92 0.404 67 0.003 06 0.116 40 0.001 28 2 524 12 2 373 14 2 191 14 2 226 23
      GSJ2-9 373 452 0.82 0.051 40 0.001 08 0.255 46 0.007 16 0.035 92 0.000 30 0.010 94 0.000 14 259 48 231 6 227 2 220 3
      GSJ2-10 155 259 0.60 0.055 56 0.002 10 0.272 42 0.012 31 0.035 56 0.000 48 0.011 99 0.000 28 435 84 245 10 225 3 241 6
      GSJ2-11 181 272 0.66 0.059 07 0.002 13 0.315 72 0.014 19 0.038 72 0.000 51 0.014 69 0.000 36 569 79 279 11 245 3 295 7
      GSJ2-12 150 249 0.60 0.049 86 0.001 60 0.246 80 0.009 57 0.036 03 0.000 35 0.010 91 0.000 22 189 75 224 8 228 2 219 4
      GSJ2-13 205 999 0.21 0.053 45 0.000 97 0.299 64 0.008 23 0.040 62 0.000 45 0.016 30 0.000 39 348 41 266 6 257 3 327 8
      GSJ2-14 77 1 086 0.07 0.160 27 0.001 04 9.362 61 0.199 01 0.421 42 0.003 10 0.118 94 0.001 81 2 458 11 2 374 20 2 267 14 2 272 33
      GSJ2-15 47 93 0.50 0.052 16 0.003 00 0.261 60 0.015 76 0.036 33 0.000 50 0.012 39 0.000 43 292 132 236 13 230 3 249 9
      GSJ2-16 539 1 707 0.32 0.051 54 0.000 72 0.286 82 0.007 18 0.040 19 0.000 29 0.013 84 0.000 17 265 32 256 6 254 2 278 3
       
      样号 岩性 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd 1σ εNd(t) T2DM(Ga)
      SCJ3 闪长岩 57.71 669.90 0.248 3 0.706 540 50 0.705 74 6.29 37.44 0.1017 0.512 483 3 -0.3 1.02
      SCJ4 54.57 499.80 0.314 8 0.706 780 50 0.705 76 6.14 35.33 0.105 2 0.512 491 2 -0.2 1.02
      SCJ6 闪长玢岩 50.96 1 416.00 0.103 8 0.706 260 60 0.705 92 4.44 27.72 0.096 9 0.512 035 3 -8.9 1.72
      SCJ7 75.10 1 033.00 0.209 7 0.706 050 40 0.705 37 4.37 25.86 0.102 2 0.512 012 6 -9.5 1.77
      SCJ8 54.99 1 234.00 0.128 5 0.706 290 50 0.705 87 4.46 26.68 0.101 1 0.512 026 3 -9.2 1.75
      SCB1 84.54 664.00 0.367 0 0.706 540 60 0.705 35 4.03 22.58 0.107 8 0.512 318 6 -3.7 1.30
      SCB2 88.73 705.10 0.362 8 0.706 670 50 0.705 49 4.08 22.57 0.109 4 0.512 319 2 -3.7 1.30
      SCB3 88.66 601.50 0.424 9 0.706 410 10 0.705 03 3.97 21.93 0.109 6 0.512 331 3 -3.5 1.28
      注:εNd(t)值计算采用(147Sm/144Nd)CHUR=0.196 7,(143Nd/144Nd)CHUR=0.512 638,t代表成岩年龄(228 Ma);同位素亏损地幔模式年龄(TDM2)计算采用(147Sm/144Nd)DM=0.213 7及(143Nd/144Nd)DM=0.513 15.
      下载: 导出CSV

      表  2  金厂沟梁脉岩主量元素(%)、微量及稀土元素(10-6)分析结果

      Table  2.   Major (%) and trace elements (10-6) compositions of dikes from Jinchanggouliang

      岩性 闪长岩 闪长玢岩
      样号 SCJ1 SCJ3 SCJ4 J26-211-1* Jc91-11-2* Jc13-1* SCJ6 SCJ7 SCB1 SCB2 SCB3 J26-13-5-2* J26-711-3* Jc91-4*
      SiO2 56.44 62.02 64.22 61.72 54.64 60.90 51.22 54.58 60.43 60.47 58.93 56.80 68.48 54.52
      TiO2 1.04 0.83 0.80 0.51 0.81 0.55 0.83 0.87 0.62 0.64 0.65 1.16 0.51 1.06
      Al2O3 16.87 15.21 14.92 15.43 15.00 15.17 15.00 15.36 13.82 13.88 13.67 16.69 14.73 17.50
      Fe2O3 2.50 1.93 1.40 1.29 2.07 1.99 3.89 4.66 2.31 2.34 2.05 2.02 1.09 2.98
      MnO 0.05 0.08 0.08 0.10 0.11 0.19 0.16 0.11 0.08 0.09 0.11 0.19 0.06 0.05
      MgO 3.82 3.68 3.58 4.71 8.13 4.65 4.92 5.75 3.72 3.76 4.01 3.10 1.35 5.24
      FeO 4.42 3.04 3.41 3.02 4.58 2.40 3.01 3.27 2.67 2.80 3.12 6.71 1.72 4.12
      CaO 2.76 3.33 2.52 4.47 5.94 4.90 8.42 3.57 4.15 4.30 4.47 1.18 1.88 3.10
      Na2O 5.30 3.60 3.77 3.93 3.68 3.80 3.24 2.06 3.84 3.88 3.17 2.85 3.80 3.13
      K2O 2.59 2.80 2.66 1.95 1.79 1.73 2.93 3.10 3.23 3.29 3.80 4.98 4.18 5.15
      P2O5 0.33 0.29 0.29 0.15 0.19 0.13 0.37 0.37 0.19 0.18 0.18 0.29 0.13 0.33
      LOI 2.80 2.03 1.83 2.03 2.04 2.91 5.30 5.89 4.08 3.77 5.09 3.25 1.42 2.96
      Total 98.93 98.84 99.47 99.31 98.98 99.32 99.29 99.59 99.13 99.40 99.25 99.22 99.35 100.14
      Mg# 50.5 57.9 57.7 66.8 69.2 66.4 57.4 57.9 58.3 57.7 59.0 39.3 47.1 57.9
      Na2O+K2O 7.89 6.40 6.43 5.88 5.47 5.53 6.17 5.16 7.07 7.17 6.97 7.83 7.98 8.28
      Sc 16.26 10.12 9.86 - - - 14.56 14.45 13.47 14.11 14.70 - - -
      V 150 91 83 - - - 106 108 108 118 118 - - -
      Cr 15 119 113 - - - 302 321 170 180 177 - - -
      Co 21 18 17 - - - 26 29 17 18 18 - - -
      Ni 22 77 97 - - - 190 264 64 72 66 - - -
      Rb 138 59 54 54 52 45 51 75 84 87 90 152 113 392
      Sr 444 640 476 624 646 550 1 199 1 003 616 655 569 313 411 680
      Y 15.03 17.25 16.81 100.42 14.12 9.93 14.12 14.57 12.99 13.25 12.96 15.06 11.45 15.58
      Zr 161 262 249 115 141 106 164 163 140 135 127 151 214 158
      Nb 7.88 12.42 12.66 4.33 4.61 4.08 10.16 10.14 9.27 9.39 9.51 7.39 13.42 9.28
      Ba 565 1 060 1 006 638 533 400 982 723 1 179 1 245 1 121 2 127 1 043 1 060
      La 29.97 45.80 44.53 15.41 20.97 14.03 36.09 31.42 30.05 29.13 29.44 27.02 47.92 28.09
      Ce 61.04 88.29 85.99 32.40 45.52 27.73 69.10 61.92 55.56 54.95 55.36 58.16 82.82 57.54
      Pr 7.72 10.21 10.11 3.77 5.37 3.27 8.02 7.31 6.42 6.22 6.23 7.00 9.00 6.71
      Nd 30.96 37.28 36.31 15.41 22.08 12.48 29.02 26.53 23.26 22.92 22.85 29.37 31.56 27.01
      Sm 5.39 6.39 6.38 3.22 4.54 2.52 4.67 4.57 4.22 4.10 4.17 5.31 5.03 5.11
      Eu 1.54 1.64 1.56 0.88 1.32 0.69 1.36 1.16 1.21 1.22 1.19 1.78 1.04 1.59
      Gd 4.27 5.14 5.04 2.65 3.57 2.37 3.90 3.81 3.46 3.55 3.47 4.16 3.62 4.06
      Tb 0.56 0.70 0.66 0.40 0.55 0.33 0.51 0.50 0.46 0.48 0.47 0.58 0.47 0.61
      Dy 3.06 3.55 3.51 2.01 2.84 1.86 2.82 2.71 2.59 2.55 2.54 2.92 2.37 3.27
      Ho 0.58 0.65 0.64 0.40 0.57 0.36 0.55 0.52 0.49 0.49 0.49 0.59 0.42 0.62
      Er 1.61 1.74 1.69 1.00 1.41 0.82 1.44 1.33 1.34 1.35 1.35 1.56 1.09 1.49
      Tm 0.23 0.24 0.22 0.15 0.22 0.13 0.20 0.17 0.19 0.19 0.18 0.26 0.17 0.23
      Yb 1.50 1.54 1.45 0.94 1.35 0.74 1.30 1.14 1.20 1.26 1.22 1.57 1.07 1.39
      Lu 0.23 0.23 0.22 0.15 0.2 0.09 0.19 0.16 0.18 0.19 0.18 0.26 0.17 0.21
      Hf 3.97 6.49 6.15 2.91 3.25 2.03 4.09 3.93 3.76 3.71 3.34 3.6 3.57 3.76
      Ta 0.53 0.92 0.96 0.36 0.34 0.29 0.68 0.65 0.65 0.63 0.64 0.42 1.11 0.59
      Pb 7.00 27.84 21.24 18.69 15.03 28.11 15.03 15.43 15.07 14.95 25.15 4.83 18.96 5.10
      Th 4.33 16.65 16.85 6.73 6.39 4.22 6.35 6.01 8.33 8.12 7.91 3.84 29.37 4.91
      U 1.56 3.91 4.15 2.18 1.7 1.37 1.47 1.39 1.81 1.81 1.75 0.93 3.85 1.35
      REE 148.68 203.41 198.31 78.79 110.52 67.42 159.17 143.26 130.63 128.62 129.15 140.52 186.75 137.91
      (La/Yb)n 14.31 21.28 22.07 11.71 11.11 13.60 19.90 19.75 17.94 16.57 17.31 12.37 32.12 14.55
      Eu/Eu* 0.96 0.86 0.82 0.90 0.97 0.86 0.95 0.84 0.95 0.97 0.94 1.13 0.72 1.04
      Zr/Hf 40.63 40.27 40.42 39.64 43.25 52.13 40.14 41.60 37.15 36.42 37.96 42.07 60.07 42.11
      Nb/Ta 14.81 13.48 13.23 11.95 13.72 13.87 14.95 15.64 14.31 14.82 14.90 17.68 12.13 15.70
      Nb/U 5.06 3.18 3.05 1.98 2.71 2.98 6.93 7.28 5.13 5.20 5.42 7.95 3.48 6.89
      标注*样品资料陈军强等(2005)资料;“-”代表未报道.
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [2] Canning, J.C., Henney, P.J., Morrison, M.A., et al., 1996. Geochemistry of Late Caledonian minettes from northern Britain: implications for the Caledonian sub-continental lithospheric mantle. Mineralogical Magazine, 60(1): 221-236. http://www.degruyter.com/view/j/minmag.1996.60.issue-1/minmag.1996.060.398.15/minmag.1996.060.398.15.xml
      [3] Chen, B., Tian, W., Liu, A.K., 2008. Petrogenesis of Xiaozhangjiakou mafic-ultramafic complex, North Hebei: constraints from petrological, geochemical and Nd-Sr isotopic data. Geological Journal of China Universities, 14(3): 295-303 (in Chinese with English abstract). http://www.researchgate.net/publication/284264471_Petrogenesis_of_Xiaozhangjiakou_mafic-ultramafic_complex_North_Hebei_constraints_from_petrological_geochemical_and_Nd-Sr_isotopic_data
      [4] Chen, B., Zhai, M.G., 2003. Geochemistry of Late Mesozoic lamprophyre dykes from the Taihang Mountains, North China, and implications for the sub-continental lithospheric mantle. Geological Magazine, 140(1): 87-93. doi: 10.1017/S0016756802007124
      [5] Chen, J.Q., Sun, J.G., Piao, S.C., et al., 2005. Genesis and significance of dark dikes in the Jinchanggouliang mine area, Inner Mongolia: evidences from geochemistry of the major and trace elements. Journal of Jilin University (Earth Science Edition), 35(6): 707-713 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_cckjdxxb200506005.aspx
      [6] Chen, Y.X., Chen, W.J., Zhou, X.H., et al., 1997. Mesozoic volcanic rocks in Liaoxi and neighborhood-chronology, geochemistry and geological setting. Earthquake Publishing House, Beijing, 1-279 (in Chinese).
      [7] Currie, K.L., Williams, P.R., 1993. An Archean calc-alkaline lamprophyre suite, northeastern Yilgarn block, western Australia. Lithos, 31(1-2): 33-50. doi: 10.1016/0024-4937(93)90031-7
      [8] Fan, Q.C., Zhang, H.F., Sui, J.L., et al., 2005. Magma underplating and Hannuoba present crust-mantle transitional zone composition: xenolith petrological and geochemical evidence. Science in China (Series D), 48(8): 1089-1105. doi: 10.1360/04yd0007
      [9] Fowler, M.B., Henney, P.J., 1996. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contributions to Mineralogy Petrology, 126(1-2): 199-215. doi: 10.1007/s004100050244
      [10] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean crustal evolution in the northern Yilarn craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011
      [11] Guo, F., Fan, W.M., Wang, Y.J., et al., 2004. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 78(3): 291-305. doi: 10.1016/j.lithos.2004.05.001
      [12] Han, B.F., Kagami, H., Li, H.M., 2004. Age and Nd-Sr isotopic geochemistry of the Guangtoushan alkaline granite, Hebei Province, China: implications for Early Mesozoic crust-mantle interaction in North China block. Acta Petrologica Sinica, 20(6): 1375-1388 (in Chinese with English abstract).
      [13] Han, Q.J., Shao, J.A., Zhou, R., 2000. Petrology, geochemistry and petrogenesis of Early Mesozoic diorites in Harqin area, Inner-Mongolia. Acta Petrologica Sinica, 16(3): 385-391 (in Chinese with English abstract). http://www.researchgate.net/publication/279622216_Petrology_geochemistry_and_petrogenesis_of_Early_Mesozoic_diorites_in_Harqin_area_Inner-Mongolia
      [14] Hart, C.J., Goldfarb, R.J., Qiu, Y.M., et al., 2002. Gold deposits of the northern margin of the North China Craton: multiple Late Paleozoic-Mesozoic mineralizing events. Mineralium Deposita, 37(3-4): 326-351. doi: 10.1007/s00126-001-0239-2
      [15] He, S.P., Wang, H.L., Chen, J.L., et al., 2008. La-ICP-MS U-Pb zircon geochronology of basic dikes within Maxianshan rock group in the Central Qilian Mountains and its tectonic implications. Earth Science—Journal of China University of Geosciences, 33(1): 35-45 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.005
      [16] Huang, H., Gao, S., Hu, Z.C., et al., 2007. Geochemistry of the high-Mg andesites at Zhangwu, western Liaoning: implication for delamination of newly formed lower crust. Science in China (Series D), 50(12): 1773-1786. doi: 10.1007/s11430-007-0121-x
      [17] Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, Central China. Chemical Geology, 157(1-2): 119-146. doi: 10.1016/S0009-2541(98)00197-1
      [18] Li, J.W., Vasconcelos, P., Zhou, M.F., et al., 2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: implications for regional mineralization and geodynamic setting. Economic Geology, 101(5): 1023-1038. doi: 10.2113/gsecongeo.101.5.1023
      [19] Li, J.Y., 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001
      [20] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the East Inner Mongolia and its constraint on the timing of collision between Siberian and Sina-Korean paleo-plates. Acta Ptrologica Sinica, 23(3): 565-582 (in Chinese with English abstract). http://www.researchgate.net/publication/279908280_Shuangjingzi_middle_Triassic_syn-collisional_crust-derived_granite_in_the_east_Inner_Mongolia_and_its_constraint_on_the_timing_of_collision_between_Siberian_and_Sino-Korean_paleo-plates?ev=auth_pub
      [21] Li, Y.G., Zhai, M.G., Miao, L.C., et al., 2003. Relationship between intrusive rocks and gold mineralization of the Anjiayingzi gold deposit, Inner Mongolia and its implications for geodynamics. Acta Petrologica Sinica, 19(4): 808-816 (in Chinese with English abstract). http://www.oalib.com/paper/1471316
      [22] Lin, B.Q., Shang, L., Shen, E.S., et al., 1993. Vein gold deposits of the Liaoxi uplift, North China platform. In: Maurice, Y.T., ed., IAGOD Quadrennial Symposium. E. Schweizerbart'sche Verlagsbuchhandlung, Science Publishers, Ottowa, 597-612.
      [23] Liu, S., Hu, R.Z., Gao, S., et al., 2008. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, East China: constrains on their petrogenesis and geodynamic significance. Chemical Geology, 255(3-4): 329-345. doi: 10.1016/j.chemgeo.2008.07.006
      [24] Liu, W., Yang, J.H., Li, C.F., 2003. Thennochronology of three major faults in the Chifeng area, Inner Mongolia of China. Acta Petrologica Sinica, 19(4): 717-728 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200304012.htm
      [25] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
      [26] Liu, Y.S., Gao, S., Yuan, H.L., et al., 2004. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chemical Geology, 211(1-2): 87-109. doi: 10.1016/j.chemgeo.2004.06.023
      [27] Mao, J.W., Wang, Y.T., Li, H.M., et al., 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: evidence from D-O-C-S isotope systematics. Ore Geology Reviews, 33(3-4): 361-381. doi: 10.1016/j.oregeorev.2007.01.003
      [28] Mayborn, K.R., Lesher, C.E., Connelly, J.N., 2008. Geochemical constraints on the late-stage evolution of basaltic magma as revealed by composite dikes within the Kangamiut dike swarm, West Greenland. Lithos, 104(1-4): 428-438. doi: 10.1016/j.lithos.2008.02.001
      [29] Miao, L.C., Fan, W.M., Zhai, M.G., et al., 2003. Zircon SHRIMP U-Pb geochronology of the granitoid intrusions from Jinchanggouliang-Erdaogou gold orefield and its significance. Acta Ptrologica Sinica, 19(1): 71-80 (in Chinese with English abstract). http://www.oalib.com/paper/1472015
      [30] Miao, L.C., Qiu, Y.M., McNaughton, N., et al., 2002. SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geology Reviews, 19(3-4): 187-204. doi: 10.1016/S0169-1368(01)00041-5
      [31] Morrison, G.W., 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1): 97-108. doi: 10.1016/0024-4937(80)90067-5
      [32] Mu, B.L., Shao, J.A., Chu, Z.Y., et al., 2001. Sm-Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. Acta Petrologica Sinica, 17(3): 358-365 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200103002.htm
      [33] Müller, D., Rock, N.M.S., Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks from in different tectonic settings: a plot study. Mineralogy and Petrology, 46(4): 259-289. doi: 10.1007/BF01173568
      [34] Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, M.J., eds., Continental basalts and mantle xenoliths. Shiva Publishing, Nantwich, 158-185.
      [35] Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contribution to Mineralogy Petrology, 69(1): 33-47. doi: 10.1007/BF00375192
      [36] Poland, M.P., Fink, J.H., Tauxe, L., 2004. Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Coloarado: AMS and thin section analysis. Earth and Planetary Science Letters, 219(1-2): 155-169. doi: 10.1016/S0012-821X(03)00706-4
      [37] Prelevi, D., Foley, S.F., Cvetkovi, V., et al., 2004. Origin of minette by mixing of lamproite and dacite magmas in Veliki Majdan, Serbia. Journal of Petrology, 45(4): 759-792. doi: 10.1093/petrology/egg109
      [38] Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
      [39] Rock, N.M.S., Groves, D.I., 1988. Do lamprophyres carry gold as well as diamonds?Nature, 332: 253-255. doi: 10.1038/332253a0
      [40] Scarrow, J.H., Leat, P.T., Wareham, C.D., et al., 1998. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith: a record of arc evolution. Contribution to Mineralogy Petrology, 131(2-3): 289-305. doi: 10.1007/s004100050394
      [41] Shang, Q.H., 2004. Occurrences of Permian radiolarians in central and eastern Nei Mongol (Inner Mongolia) and their geological significance to the northern China orogen. Chinese Science Bulletin, 49(24): 2613-2619. doi: 10.1360/04wd0069
      [42] Shao, J.A., Han, Q.J., Li, H.M., 2000. Discovery of the Early Mesozoic granulite xenoliths in North China Craton. Science in China (Series D), 43(Suppl. 1): 245-252. doi: 10.1007/BF02911949
      [43] Shao, J.A., Han, Q.J., Zhang, L.Q., et al., 1999. Cumulate complex xenoliths in the Early Mesozoic in eastern Inner Mongolia. Chinese Science Bulletin, 44(14): 1272-1279. doi: 10.1007/BF02885842
      [44] Shao, J.A., Zhang, R.H., Han, Q.J., et al., 2000. Geochronology of cumulate xenoliths and their host diorites from Harqin, eastern Nei Mongol. Geochimica, 29(4): 331-336 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252983300.html
      [45] Shao, J.A., Zhang, Y.B., Zhang, L.Q., et al., 2003. Early Mesozoic dike swarms of carbonatites and lamprophyres in Datong area. Acta Petrologica Sinica, 19(1): 93-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200301009.htm
      [46] She, H.Q., Wang, Y.W., Li, Q.H., et al., 2006. The mafic granulite xenoliths and its implications to mineralization in Chaihulanzi gold deposit, Inner Mongolia, China. Acta Geological Sinica, 80(6): 863-875 (in Chinese with English abstract). http://www.researchgate.net/publication/287605950_The_mafic_granulite_xenoliths_and_its_implications_to_mineralization_in_Chaihulanzi_gold_deposit_Inner_Mongolian_China
      [47] She, H.Q., Xu, G.Z., Zhou, R., et al., 2000. Tectonic and magmatic activities in Early Mesozoic and their controlling on gold mineralization in Honghuagou gold ore field, Inner Mongolia. Geoscience, 14(4): 408-416 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/xddz200004004
      [48] Sun, D.Y., Wu, F.Y., Zhang, Y.B., et al., 2004. The final closing time of the West Lamulun River-Changchun-Yanji plate suture zone: evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174-181 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200402003.htm
      [49] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. Geological Society Special Publications, London, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [50] Tan, J., Wei, J.H., Guo, L.L., et al., 2008. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula: implications for North China craton lithosphere evolution. Science in China (Series D), 51(10): 1483-1500. doi: 10.1007/s11430-008-0079-3
      [51] Tan, J., Wei, J.H., Li, Y.H., et al., 2007. Geochemical characteristics of Late Mesozoic dikes, Jiaodong Peninsula, North China craton: petrogenesis and geodynamic setting. International Geology Review, 49(10): 931-946. doi: 10.2747/0020-6814.49.10.931
      [52] Thompson, R.N., Leat, P.T., Dickin, A.P., et al., 1990. Strongly potassic mafic magmas from lithospheric mantle sources during continental extension and heating: evidence from Miocene minettes of Northwest Colorado, U.S.A. . Earth and Planetary Science Letters, 98(2): 139-153. doi: 10.1016/0012-821X(90)90055-3
      [53] Tian, W., Chen, B., Liu, C.Q., et al., 2007. Zircon U-Pb age and Hf isotopic composition of the Xiaozhangjiakou ultramafic pluton in northern Hebei. Acta Petrologica Sinica, 23(3): 583-590 (in Chinese with English abstract). http://www.researchgate.net/publication/279576932_Zircon_U-Pb_age_and_Hf_isotopic_composition_of_the_Xiaozhangjiakou_ultramafic_pluton_in_northern_Hebei
      [54] Wang, J.P., Liu, Y.S., Dong, F.X., et al., 1992. Study on ore-controlling tectonics of Jinchanggouliang gold deposits, Inner Mongolia. Geological Publishing House, Beijing, 8-11 (in Chinese).
      [55] Wang, Y., 1996. Tectonic evolutional processes of Inner Mongolia-Yanshan orogenic belt in eastern china during the late of late Paleozoic-mesozoic. Geological Publishing House, Beijing, 1-142 (in Chinese).
      [56] Wang, Z., Xu, Z.X., Yang, F.H., 1989. Geology and genesis of Erdaogou gold deposit, Liaoning Province. Journal of Jilin University (Earth Science Edition), 19(3): 287-297 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ198903006.htm
      [57] Winchester, J.A., Floyd, P.A., 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7
      [58] Wood, D.A., Joron, J.L., Treuil, M., 1979. Are-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2): 326-336. doi: 10.1016/0012-821X(79)90133-X
      [59] Wu, F.Y., Cao, L., 1999. Some important problems of geology in northeastern Asia. World Geology, 18(2): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ902.001.htm
      [60] Xu, X.W., Zhang, B.L., Qin, K.Z., et al., 2007. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China. Lithos, 99(3-4): 339-362. doi: 10.1016/j.lithos.2007.06.011
      [61] Yan, G.H., Mu, B.L., Xu, B.L., et al., 1999. Triassic alkaline intrusives in the Yanliao-Yinshan area: their chronology, Sr, Nd and Pb isotopic characteristics and their implication. Science in China (Series D), 42(6): 582-587. doi: 10.1007/BF02877785
      [62] Yan, Y., Lin, G., Xia, B., et al., 2006. U-Pb dating of single detrital zircon grains from Mesozoic sandstone in the Beipiao basin in the eastern Yan-Liao orogenic belt, China: provenance and correlation of tectonic evolution. Journal of Asian Earth Sciences, 26(6): 669-681. doi: 10.1016/j.jseaes.2005.01.002
      [63] Yang, J.H., Chung, S.L., Zhai, M.G., et al., 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145-160. doi: 10.1016/j.lithos.2003.12.003
      [64] Zhai, M.G., Fan, Q.C., 2002. Mesozoic replacement of bottom crust in North China craton: an orogenic mantle-crust interaction. Acta Petrologica Sinica, 18(1): 1-8 (in Chinese with English abstract). http://www.researchgate.net/publication/298590489_Mesozoic_replacement_of_bottom_crust_in_North_China_Craton_anorogenic_mantle-crust_interaction
      [65] Zhang, G.H., Zhou, X.H., Sun, M., et al., 1998. Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths in Hannuoba basalts, Hebei Province, and their implications for geologic processes. Acta Petrologica Sinica, 14(2): 190-197 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB802.005.htm
      [66] Zhang, H.F., Yang, Y.H., 2007. Emplacement age and Sr-Nd-Hf isotopic characteristics of diamondiferous kimberlites from the eastern North China Craton. Acta Petrologica Sinica, 23(2): 285-294 (in Chinese with English abstract). http://www.oalib.com/paper/1472156
      [67] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008. Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asia orogenic belt. Chemical Geology, 249(3-4): 262-281. doi: 10.1016/j.chemgeo.2008.01.005
      [68] Zhang, X.H., Zhang, H.F., Zhai, M.G., et al., 2009. Geochemistry of middle triassic gabbros from northern Liaoning, North China: origin and tectonic implications. Geological Magazine, 146(4): 540-551. doi: 10.1017/S0016756808005530
      [69] Zhao, L., 2008. Geochemistry and tectonic implications of the late palaeozoic mafic-ultramafic rocks belt on the middle segment of the northern margin of the North China plate(Dissertation). Beijing University, Beijing (in Chinese with English abstract).
      [70] Zheng, J.P., Lu, F.X., 1999. Mantle xenoliths from kimberlites, Shandong and Liaoning: Paleozoic mantle character and its heterogeneity. Acta Petrologica Sinica, 15(1): 65-74 (in Chinese with English abstract). http://www.oalib.com/paper/1472870
      [71] Zhou, X.H., Zhang, G.H., Yang, J.H., et al., 2001. Sr-Nd-Pb isotope mapping of Late Mesozoic volcanic rocks across northern margin of North China craton and implications to geodynamic processes. Geochimica, 30(1): 10-23 (in Chinese with English abstract). http://www.researchgate.net/publication/310751802_Sr-Nd-Pb_isotope_mapping_of_Late_Mesozoic_volcanic_rocks_across_northern_margin_of_North_China_Craton_and_implications_to_geodynamic_processes
      [72] 陈斌, 田伟, 刘安坤, 2008. 冀北小张家口基性-超基性杂岩的成因: 岩石学、地球化学和Nd-Sr同位素证据. 高校地质学报, 14(3): 295-303. doi: 10.3969/j.issn.1006-7493.2008.03.002
      [73] 陈军强, 孙景贵, 朴寿成, 等, 2005. 金厂沟梁金矿区暗色脉岩的成因和意义: 主要和微量元素地球化学证据. 吉林大学学报(地球科学版), 35(6): 707-713. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200506004.htm
      [74] 陈义贤, 陈文寄, 周新华, 等, 1997. 辽西及邻区中生代火山岩: 年代学、地球化学和构造背景. 北京: 地震出版社, 1-279.
      [75] 韩宝福, 加加美宽雄, 李惠民, 2004. 河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义. 岩石学报, 20(6): 1375-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406006.htm
      [76] 韩庆军, 邵济安, 周瑞, 2000. 内蒙古喀喇沁早中生代闪长岩的岩石学、地球化学及其成因. 岩石学报, 16(3): 385-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003010.htm
      [77] 何世平, 王洪亮, 陈隽璐, 等, 2008. 中祁连马衔山岩群内基性岩墙群锆石La-ICP-MS U-Pb年代学及其构造意义. 地球科学——中国地质大学学报, 33(1): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801008.htm
      [78] 李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝板块碰撞时限的约束. 岩石学报, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
      [79] 李永刚, 翟明国, 苗来成, 等, 2003. 内蒙古安家营子金矿与侵入岩的关系及其地球动力学意义. 岩石学报, 19(4): 808-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304023.htm
      [80] 刘伟, 杨进辉, 李潮峰, 2003. 内蒙赤峰地区若干主干断裂带的构造热年代学. 岩石学报, 19(4): 717-728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304012.htm
      [81] 苗来成, 范蔚茗, 翟明国, 等, 2003. 金厂沟梁-二道沟金矿田内花岗岩类侵入体锆石的离子探针U-Pb年代学及意义. 岩石学报, 19(1): 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301007.htm
      [82] 牟保磊, 邵济安, 储著银, 等, 2001. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄和Sr、Nd同位素特征. 岩石学报, 17(3): 358-365. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103002.htm
      [83] 邵济安, 张任祜, 韩庆军, 等, 2000. 内蒙古喀喇沁堆晶岩捕虏体和寄主闪长岩的同位素年龄. 地球化学, 29(4): 331-336. doi: 10.3321/j.issn:0379-1726.2000.04.004
      [84] 邵济安, 张永北, 张履桥, 等, 2003. 大同地区早中生代煌斑岩-碳酸岩岩墙群. 岩石学报, 19(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301009.htm
      [85] 佘宏全, 王义文, 李庆环, 等, 2006. 内蒙古赤峰柴胡栏子金矿基性麻粒岩包体特征及其成矿动力学意义. 地质学报, 80(6): 863-875. doi: 10.3321/j.issn:0001-5717.2006.06.008
      [86] 佘宏全, 徐贵忠, 周瑞, 等, 2000. 内蒙东部红花沟金矿田早中生代构造-岩浆活动及对金成矿的控制作用. 现代地质, 14(4): 408-416. doi: 10.3969/j.issn.1000-8527.2000.04.004
      [87] 孙德有, 吴福元, 张艳斌, 等, 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 34(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm
      [88] 田伟, 陈斌, 刘超群, 等, 2007. 冀北小张家口超基性岩体的锆石U-Pb年龄和Hf同位素组成. 岩石学报, 23(3): 583-590. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703007.htm
      [89] 王建平, 刘永山, 董法先, 等, 1992. 内蒙古金厂沟梁金矿构造控矿分析. 北京: 地质出版社, 8-11.
      [90] 王瑜, 1996. 中国东部内蒙古-燕山造山带晚古生代晚期-中生代的造山作用过程. 北京: 地质出版社, 1-142.
      [91] 王志, 徐忠勋, 杨福和, 1989. 辽宁省二道沟金矿地质及成因. 长春地质学院学报, 19(3): 287-297. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198903006.htm
      [92] 吴福元, 曹林, 1999. 东北亚地区的若干重要基础地质问题. 世界地质, 18(2): 1-13.
      [93] 翟明国, 樊祺诚, 2002. 华北克拉通中生代下地壳置换: 非造山过程的壳幔交换. 岩石学报, 18(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200201000.htm
      [94] 张国辉, 周新华, 孙敏, 等, 1998. 河北汉诺坝玄武岩中麻粒岩类和辉石岩类捕掳体Sr、Nd、Pb同位素特征及其地质意义. 岩石学报, 14(2): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB802.005.htm
      [95] 张宏福, 杨岳衡, 2007. 华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征. 岩石学报, 23(2): 285-294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702010.htm
      [96] 赵磊, 2008. 华北板块北缘中段晚古生代镁铁-超镁铁岩石的岩石地球化学特征及其构造意义(学位论文). 北京: 北京大学.
      [97] 郑建平, 路凤香, 1999. 胶辽半岛金伯利岩中地幔捕虏体岩石学特征: 古生代岩石圈地幔及其不均一性. 岩石学报, 15(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB901.006.htm
      [98] 周新华, 张国辉, 杨进辉, 等, 2001. 华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义. 地球化学, 30(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101002.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3119
    • HTML全文浏览量:  156
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-03-30
    • 刊出日期:  2010-11-01

    目录

      /

      返回文章
      返回