Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications
-
摘要: 金水口堇青石花岗岩是迄今在青藏高原东北缘发现的唯一的一个强过铝质花岗岩岩体, 含堇青石、石榴子石和黑云母等镁铁质矿物, 属于镁铁质过铝质花岗岩.但目前对该岩体的成因机制及其对基底源区的构造属性和构造演化意义尚缺乏深入研究.为此, 本文以详细的地质学和岩相学研究为基础, 综合开展了元素和Nd-Sr-Pb同位素地球化学研究.金水口堇青石花岗岩的A/CNK=1.12~2.05, K2O/Na2O=0.44~2.99, 富Rb、Th、U, 贫Sr、Ba, Rb/Sr=0.42~1.23, Nb/Ta=11.88~15.30, 显示明显的负Eu异常(δEu=0.41~1.01, 平均0.62), 全岩ISr值=0.711 4~0.750 3, εNd(t)=-9.30~-13.32.这表明, 该岩体的岩浆是由地壳上部含黑云母的变质杂砂岩部分熔融而成, 高的熔融温度但较浅的熔融深度表明存在额外热源, 暗示加里东热构造事件晚期在柴南缘发生过俯冲板片拆沉、软流圈地幔上隆、基性岩浆上侵和底侵等深部过程.金水口堇青石花岗岩的二阶段亏损地幔Nd模式年龄为1.9~2.2 Ga, 初始铅同位素比值206Pb/204Pb为18.181~18.389、207Pb/204Pb为15.582~15.632、208Pb/204Pb为37.914~38.243, 表明柴达木地块基底可能具有扬子陆块的构造属性.Abstract: The Jinshuikou cordierite granite (JCG) is the only strong peraluminous granite pluton discovered so far on northwestern margin of the Tibetan plateau. This cordierite granite contains mafic minerals of cordierite, garnet and biotite, characterizing mafic peraluminous granite. However, more comprehensive investigations of its genetic mechanism and implications for affinity and tectonic evolution of the basement of the Qaidam block is needed. This paper studies systematically on major and trace elements and Nd-Sr-Pb isotopic geochemistry of the JCG following the geology and petrographical observation. The JCG pluton shows A/CNK=1.12-2.05, K2O/Na2O=0.44-2.99, Rb/Sr=0.42-1.23, Nb/Ta=11.88-15.30, and is enriched in Rb, Th and U, but depleted in Sr and Ba, significant negative Eu anomalies (δEu=0.41-1.01, average at 0.62), ISr=0.711 4-0.750 3 and εNd(t)=-9.30 to -13.32. These data suggest that magma for the JCG was derived from partial melting of biotite-bearing metagreywacke in the upper continental crust, and that the melting conditions featuring high temperature but shallow depth level suggest existence of an extra heat source, implying that deep processes of subducted plate delamination, asthenospheric mantle upwelling, mafic magma intrusion and underplating might occurred at southern margin of the Qaidam block in the late caledonian. The JCG pluton has Nd model age (TDM2) of 1.9-2.2 Ga and initial Pb isotope ratios 206Pb/204Pb of 18.181-18.389, 207Pb/204Pb values of 15.582-15.632 and 208Pb/204Pb values of 37.914-38.243, suggesting that the basement of the Qaidam block is geochemically akin to that of the Yangtze block.
-
图 1 地质背景及样品位置(据刘永成和叶永福,1998;张建新等,2003修改)
Fig. 1. Geological setting and sample location
图 2 A/NK-A/CNK图解(据Shand, 1927; Maniar and Piccoli, 1989)
注:以下各图图例同上
Fig. 2. Relations of A/NK vs. A/CNK
图 3 (Na2O+K2O)-SiO2图解(a)和K2O-SiO2图解(b)(图 3a据Rickwood, 1989;图 3b据Rickwood, 1989)
Fig. 3. Relations of (Na2O+K2O) vs. SiO2 (a) and K2O vs. SiO2 (b)
图 4 金水口堇青石花岗岩球粒陨石标准化的稀土元素(a)和微量元素(b)组成模式(a.球粒陨石标准化值据Sun and McDonough, 1989; b.原始地幔数值据Sun and McDonough, 1989)
Fig. 4. Chondrite normalized REE patterns (a) and primative mantle normalized trace elements spider diagram (b) of Jinshuikou cordierite granite
图 5 CaO/Na2O-Al2O3/TiO2图解(a)和(TFeO+MgO+TiO2)-SiO2图解(b)
a据Sylvester(1998)略修改,其中拉克伦造山带数据为Sylvester(1998)转引数据;b据Sylvester(1998)略修改
Fig. 5. Relations of CaO/Na2O vs. Al2O3/TiO2 (a) and (TFeO+MgO+TiO2) vs. SiO2 (b)
图 6 εNd(0)-εSr(0)关系图解(据Depaolo and Wasserburg, 1979略修改)
Fig. 6. Relations of εNd(0) vs. εSr(0)
图 7 Rb/Ba-Rb/Sr图解(a)和CaO/(TFe2O3+MgO+TiO2)-(CaO+TFe2O3+MgO+TiO2)图解(b)
a据Sylvester(1998);b据Patiño Douce(1999)略修改;HP.实线代表高压条件下泥质岩熔体和玄武质岩浆混合的演化线;LP.实线代表低压条件下泥质岩熔体和玄武质岩浆混合的演化线;R.断线代表泥质岩中熔体-残余体混合线;R1.虚线代表金水口堇青石花岗岩的熔体-残余体混合线
Fig. 7. Relations of Rb/Ba vs. Rb/Sr (a) and CaO/(TFe2O3+MgO+TiO2) vs. CaO+TFe2O3+MgO+TiO2 (b)
图 8 207Pb/204Pb-206Pb/204Pb和208Pb/204Pb-206Pb/204Pb图解
图中分区据张本仁等(2002); SNC.华北陆块南缘花岗岩和斑岩长石; NYCE.扬子陆块北缘东段中生代花岗岩长石; NQ1.北秦岭新元古代和早古生代花岗岩类长石; NQ2.北秦岭印支期和燕山期花岗岩类长石; SQE1.南秦岭东段新元古代和早古生代花岗岩类长石; SQE2.南秦岭东段印支期花岗岩类长石; SQW.南秦岭西段中生代花岗岩类长石
Fig. 8. 8Relations of 207Pb/204Pb-206Pb/204Pb and 208Pb/204Pb-206Pb/204Pb
表 1 金水口堇青石花岗岩主量元素(%)和微量元素(μg/g)成分
Table 1. Major and trace elements composition of Jinshuikou cordierite granite
样品编号 03JSK-3 03JSK-4 03JSK-5 03JSK-6 03JSK-7 03JSK-16 03JSK-17 NJ01001* NJ01003* NJ01008* SiO2 74.31 76.47 78.00 74.02 74.44 75.76 72.40 73.42 77.89 73.19 TiO2 0.31 0.41 0.39 0.50 0.48 0.53 0.59 0.40 0.55 0.41 Al2O3 12.98 11.43 10.04 12.03 12.47 11.68 13.62 13.24 11.15 12.56 TFeO 2.73 3.38 3.22 4.06 3.19 3.95 4.27 2.85 3.40 4.09 TFe2O3 3.03 3.76 3.58 4.51 3.54 4.39 4.75 3.17 3.78 4.55 MnO 0.06 0.09 0.08 0.12 0.09 0.12 0.12 0.05 0.06 0.05 MgO 1.01 1.04 1.14 1.25 1.00 1.18 1.15 1.23 1.21 2.30 CaO 1.60 1.45 0.96 1.44 1.68 0.88 0.66 1.41 2.42 0.59 Na2O 2.23 1.71 1.38 1.84 2.05 1.32 1.36 2.29 2.62 1.11 K2O 3.22 2.56 2.91 2.96 3.33 3.54 4.06 3.26 1.16 3.03 P2O5 0.06 0.05 0.04 0.05 0.05 0.05 0.06 0.02 0.02 0.01 A/CNK 1.29 1.39 1.40 1.36 1.24 1.54 1.74 1.35 1.12 2.05 C 3.08 3.35 3.00 3.33 2.56 4.21 6.01 3.46 1.21 6.54 CaO/Na2O 0.72 0.85 0.70 0.78 0.82 0.67 0.49 0.62 0.92 0.53 Al2O3/TiO2 41.87 27.88 25.74 24.06 25.98 22.04 23.08 33.10 20.27 30.63 La 38.12 40.68 33.61 40.73 40.14 44.32 44.99 25.56 39.70 31.43 Ce 75.07 81.00 69.58 82.43 80.07 88.12 90.21 48.83 77.73 65.19 Pr 8.72 9.18 8.05 9.43 8.81 10.26 10.49 5.34 8.60 7.47 Nd 31.41 32.56 29.43 34.04 32.64 36.48 38.01 19.54 30.56 27.90 Sm 5.42 5.89 5.12 6.31 5.40 6.47 7.10 3.37 5.08 4.80 Eu 1.24 1.09 1.00 1.10 1.38 1.07 1.09 1.06 1.05 0.62 Gd 4.62 6.51 4.70 6.97 5.16 7.29 8.04 2.96 4.69 4.47 Tb 0.66 1.07 0.82 1.21 0.87 1.16 1.37 0.43 0.68 0.68 Dy 3.72 6.45 5.70 7.82 6.03 7.22 9.11 2.36 3.76 4.11 Ho 0.71 1.36 1.29 1.80 1.27 1.47 2.11 0.45 0.67 0.80 Er 1.98 4.13 4.30 5.88 3.98 4.19 6.21 1.19 1.62 1.99 Tm 0.28 0.60 0.68 0.96 0.59 0.58 0.89 0.20 0.24 0.30 Yb 1.83 4.12 4.71 6.85 3.82 3.71 5.46 1.33 1.45 1.72 Lu 0.28 0.60 0.76 1.07 0.58 0.53 0.76 0.22 0.23 0.26 ΣREE 174.06 195.24 169.76 206.60 190.74 212.87 225.82 112.84 176.06 151.74 δEu 0.74 0.54 0.61 0.51 0.79 0.47 0.44 1.01 0.65 0.41 (La/Yb)N 14.93 7.09 5.11 4.27 7.54 8.57 5.91 3.35 4.74 3.18 Ba 533.24 673.09 740.74 707.16 614.18 810.77 755.17 880.40 93.16 521.50 Rb 104.54 76.87 90.68 98.92 92.12 98.19 142.26 118.80 91.42 124.00 Th 13.04 13.91 15.51 15.17 11.81 16.23 19.04 7.40 11.25 12.47 U 1.58 1.88 1.28 1.51 1.28 1.44 2.78 1.75 1.85 1.88 Nb 8.90 7.33 7.43 9.39 9.39 9.37 12.47 8.46 12.72 7.89 Ta 0.70 0.57 0.63 0.71 0.68 0.64 0.91 0.60 1.01 0.52 Sr 243.48 173.83 208.09 226.26 176.71 136.71 121.68 202.90 215.30 100.60 Zr 166.27 246.81 211.30 240.03 177.40 223.67 218.31 181.70 203.30 178.60 Hf 4.76 6.60 5.93 6.31 5.07 6.16 5.98 5.32 5.92 5.17 Ga 16.82 13.71 10.94 14.43 13.90 14.52 15.75 15.79 15.49 16.95 Ni 13.92 11.60 10.79 10.61 13.91 5.60 6.80 10.32 17.01 21.73 Cr 28.40 34.92 42.20 46.66 37.50 37.83 50.59 20.23 37.95 27.71 Co 6.46 7.64 7.48 10.14 8.67 8.19 8.97 6.95 8.27 9.56 Y 24.61 37.17 62.82 47.95 45.07 38.78 57.07 13.43 19.61 23.59 Rb/Ba 0.20 0.11 0.12 0.14 0.15 0.12 0.19 0.13 0.98 0.24 Rb/Sr 0.43 0.44 0.44 0.44 0.52 0.72 1.17 0.59 0.42 1.23 Nb/Ta 12.71 12.92 11.88 13.19 13.71 14.69 13.71 14.05 12.64 15.30 注:*为余能等(2005)测定的金水口堇青石花岗岩的数据;表中A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔数分数比;C为刚玉分子;TFeO=0.899 81×Fe2O3+FeO;TFe2O3=1.111 34×FeO+Fe2O3. 表 2 金水口堇青石花岗岩的Sr-Nd同位素成分
Table 2. Sr and Nd isotopic compositions of Jinshuikou cordierite granite
样品编号 87Rb/86Sr 87Sr/86Sr ±2 σ ISr εSr(0) εSr(t) 147Sm/144Nd 143Nd/144Nd ±2 σ εNd(0) εNd(t) TDM1(Ga) TDM2(Ga) 03JSK-3 1.245 0.749 020 15 0.742 320 631.94 543.49 0.112 0.511 796 11 -16.42 -12.35 2.0 2.1 03JSK-5 1.263 0.751 237 15 0.744 438 663.41 573.60 0.114 0.511 810 11 -16.15 -12.17 2.0 2.1 03JSK-6 1.267 0.749 367 16 0.742 546 636.86 546.73 0.112 0.511 746 11 -17.40 -13.32 2.1 2.2 03JSK-7 1.511 0.756 250 17 0.748 117 734.56 625.84 0.112 0.511 934 12 -13.73 -9.65 1.8 1.9 03JSK-18 1.074 0.754 576 14 0.748 794 710.80 635.47 0.118 0.511 885 11 -14.69 -10.90 2.0 2.0 NJ01001* 1.698 0.720 533 17 0.711 394 227.58 104.24 0.104 0.511 789 11 -16.56 -12.10 1.9 2.1 NJ01003* 1.231 0.756 953 14 0.750 326 744.54 657.23 0.100 0.511 735 9 -17.61 -12.96 1.9 2.2 NJ01008* 3.575 0.742 014 14 0.722 775 532.49 265.86 0.104 0.511 932 8 -13.77 -9.30 1.7 1.9 注:*为余能等(2005)测定的金水口堇青石花岗岩的数据;表中以t=378 Ma,对所有样品进行ISr、εSr(t)和εNd(t)的计算. 表 3 金水口堇青石花岗岩的全岩Pb同位素成分
Table 3. Pb isotopic compositions from the whole rock of Jinshuikou cordierite granite
样品编号 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb) t (207Pb/204Pb) t (208Pb/204Pb) t 03JSK-3 18.637 15.645 38.887 18.389 15.632 38.243 03JSK-5 18.495 15.601 38.832 18.290 15.590 38.050 03JSK-6 18.395 15.611 38.753 18.204 15.601 38.147 03JSK-7 18.512 15.612 38.643 18.262 15.598 37.914 03JSK-18 18.299 15.588 38.219 18.181 15.582 38.093 注:表中以t=378 Ma,对所有样品进行初始Pb同位素比值计算. -
Black, R., Liégeois, J.P., 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. J. Geol. Soc. Lond., 150: 89-98. doi: 10.1144/gsjgs.150.1.0088 Bourgois, J., Martin, H., Lagabrielle, Y., et al., 1996. Subduction erosion related to spreading-ridge subduction: Taitao peninsula (Chile margin triple junction area). Geology, 24(8): 723-726. doi:10.1130/0091-7613(1996)024<0723:SERTSR>2.3.CO;2 Browman, J.B., Sisson, V.B., Valley, J.W., et al., 2003. Oxygen isotope constraints on fluid infiltration associated with high-temperature-pressure metamorphism (Chugach metamorphic complex) within the Eocene southern Alaska forearc. In: Sisson, V.B., Roeske, S.M., Pavlis, T.L., eds., Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Geol. Soc. Am. Spec. Paper, 371: 237-252. Chappell, B.W., White, A.J.R., 1992. I- and S-type granites in the Lachlan fold belt. Trans. R. Soc. Edinburgh: Earth Sci., 83(1-2): 1-26. doi: 10.1017/S0263593300007720 Chen, B.W., Wang, Y.B., 1996. Some characteristics of orogenic belts in Qinghai-Tibet plateau. J. Southeast Asian Earth Sci., 13(3-5): 237-242. doi: 10.1016/0743-9547(96)83685-3 Chen, J.F., Jahn, B.M., 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1-2): 101-133. doi: 10.1016/S0040-1951(97)00186-8 Chen, N.S., He, L., Sun, M., et al., 2002. Precise timing of the Early Paleozoic metamorphism and thrust deformation in the eastern Kunlun orogen. Chinese Science Bulletin, 47(8): 628-631 (in Chinese with English abstract). doi: 10.1360/csb2002-47-8-628 Chen, N.S., Li, X.Y., Wang, X.Y., et al., 2006a. SHRIMP U-Pb age of Neoproterozoic metagranite in the north Kunlun unit on the southern margin of the Qaidam block in China. Geological Bulletin of China, 25(11): 1311-1314 (in Chinese with English abstract). Chen, N.S., Li, X.Y., Zhang, K.X., et al., 2006b. Lithological characteristics of the Baishahe Formation to the south of Xiangrede town, eastern Kunlun Mountains and its age constrained from zircon Pb-Pb dating. Geological Science and Technology Information, 25(6): 1-7 (in Chinese with English abstract). Chen, N.S., Wang, Q.Y., Chen, Q., et al., 2007a. Components and metamorphism of the basements of the Qaidam and Oulongbuluke micro-continental blocks, and a tentative interpretation of paleocontinental evolution in NW-Central China. Earth Science Frontiers, 14(1): 43-55 (in Chinese with English abstract). Chen, N.S., Wang, X.Y., Zhang, H.F., et al., 2007b. Geochemistry and Nd-Sr-Pb isotopic compositions of granitoids from Qaidam and Oulongbuluke micro-block, NW China: constraints on basement nature and tectonic affinity. Earth Science—Journal of China University of Geosciences, 32(1): 7-21 (in Chinese with English abstract). Clemens, J.D., 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18. doi: 10.1016/S0012-8252(02)00107-1 Davies, J.H., von Blanckenburg, F., 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129(1-4): 85-102. doi: 10.1016/0012-821X(94)00237-S Depaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim. Cosmochim. Acta., 43: 615-627. doi: 10.1016/0016-7037(79)90169-8 Elburg, M.A., 1996. Genetic significance of multiple enclave types in a perahminous ignimbrite suite, Lachlan fold belt, Australia. J. Petrol., 37(6): 1385-1408. doi: 10.1093/petrology/37.6.1385 Finger, F., Roberts, M.P., Haunschmid, B., et al., 1997. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral. Petrol., 61: 67-96. doi: 10.1007/BF01172478 Foley, S., Peccerillo. A., 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28(3-6): 181-185. doi: 10.1016/0024-4937(92)90005-J Li, X.H., Zhao, Z.H., Gui., X.T., et al., 1991. Sm-Nd isotopic and zircon U-Pb constraints on the age of formation of the Precambrian crust creation of southern China. Geochimica, 20(3): 255-264 (in Chinese with English abstract). Liao, Z.L., Mo, X.X., Pan, G.T., et al., 2006. On peraluminous granites in Tibet, China. Geological Bulletin of China, 25(7): 812-821 (in Chinese with English abstract). Liew, T.C., Hofmann, A.W., 1988. Precambrian crustal components, plutonic assimilations, plate environment of the Hercynian fold belt of central Europe: indications from a Nd and Sr isotopic study. Contrib. Mineral. Petrol., 98: 129-138. doi: 10.1007/BF00402106 Liu, Y.C., Ye, Y.F., 1998. New understanding of the high-grade metamorphic rocks in Jingshuikou region, eastern Kunlun Mountains. Geology of Qinghai, 2(01): 18-26 (in Chinese with English abstract). Liu, Y.J., Genser, J., Neubauer, F., et al., 2005. 40Ar/39Ar mineral ages from basement rocks in the eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398(3-4): 199-224. doi: 10.1016/j.tecto.2005.02.007 Long, X.P., Jin, W., Ge, W.C., et al., 2006. Zircon U-Pb geochronology and geological implications of the granitoids in Jinshuikou, east Kunlun, NW China. Geochimica, 35(4): 333-345 (in Chinese with English abstract). Lu, S.N., Yu, H.F., Zhao, F.Q., et al., 2002. Preliminary study of Precambrian geology in the North Tibet-Qinghai plateau. Geological Publishing House, Beijing (in Chinese). Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101(5): 635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 Patiño Douce, A.E., 1999. What do experiments tell us about relative contributions of crust and mantle to the origin of granitic magmas? In: Carstro, A., Fernandez, C., Vigneresse, J.L., eds., Understanding granites: inter grating new and classic techniques. Geologieal Society, Special Publications, London, 168: 55-75. Patiño Douce, A.E., Beard, J.S., 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrology, 36(3): 707-738. doi: 10.1093/petrology/36.3.707 Patiño Douce, A.E., Harris, N., 1998. Experimental constraints on Himalayan anatexis. J. Petrology, 39(4): 689-710. doi: 10.1093/petroj/39.4.689 Prouteau, G. ., Scaillet, B., Pichavant, M., et al., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197-200. doi: 10.1038/35065583 Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513. . doi: 10.1016/S0039-9140(99)00318-5 Qinghai Bureau of Geology and Mineral Resources, 1997. Petrological strata in Qinghai Province. China University of Geosciences Press, Wuhan (in Chinese). Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5 Rollison, H.R., 1993. Using geological data: evalution, presentation, interpretation. Longman Group UK Ltd., London. Rottura, A., Del Moro, A., Pinarelli, L., et al., 1991. Relationships between intermediate and acidic rocks in orogenic granitoid suites: petrological, geochemical and isotopic (Sr, Nd, Pb) data from Capo Vaticano (southern Calabria, Italy). Chem. Geol., 92(1-3): 153-176. doi: 10.1016/0009-2541(91)90054-U Sample, J.C., Reid, M.R., 2003. Large-scale, Latest Cretaceous uplift along the northeast Pacific Rim: evidence from sediment volume, sandstone petrography, and Nd isotope signatures of the Kodiak Formation, Kodiak Island, Alaska. In: Sisson, V.B., Roeske, S.M., Pavlis, T.L., eds., Geology of a transpressional orogen developed during ridge-trench interaction along the north Pacific margin. Geol. Soc. Am. Spec. Paper, 371: 51-70. Shand, S.J., 1927. Eruptive rock. D. Van Nostrand Company, New York. Smithies, R.H., 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci. Lett., 182(1): 115-125. doi: 10.1016/S0012-821X(00)00236-3 Stern, C.R., Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean austral volcanic zone. Contrib Mineral Petrol, 123(3): 263-281. doi: 10.1007/s004100050155 Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the ocean basin. Blackwell Sientific Publications (Geological Society Special publications), London, 42: 313-346. Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3 Thompson, A.B., Connolly, J.A.D., 1995. Melting of the continental crust: some thermal and petrologic constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res., 100(B8): 15565-15579. doi: 10.1029/95JB00191 Trop, J.M., Ridgway, K.D., Spell, T.L., 2003. Sedimentary record of transpressional tectonics and ridge subduction in the Tertiary Matanuska Valley-Talkeetna Mountains forearc basin, southern Alaska. In: Sisson, V.B., Roeske, S.M., Pavlis, T.L., eds., Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Geol. Soc. Am. Spec. Paper, 371: 89-118. White, A.J.R., Chappell, B.W., 1977. Ultrametamorphism and granit oid genesis. Tectonophysics, 43(1-2): 7-22. doi: 10.1016/0040-1951(77)90003-8 Wickham, S.M., Oxburgh, E.R., 1987. Low-pressure regional metamorphism in the Pyrénées and its implications for the thermal evolution of rifted continental crust. Phil. Trans. R. Soc. London A, 321: 219-242. doi: 10.1098/rsta.1987.0012 Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005. Nd isotopic constraints on the crustal formation of the North China craton. J. Asian Earth Sci., 24(5): 523-545. doi: 10.1016/j.jseaes.2003.10.011 Yin, H.F., Zhang, K.X., Chen, N.S., et al., 2003. Regional geological report of Donggji Conag Hu Map (scale 1∶250 000) of the People's Republic of China. China University of Geosciences Press, Wuhan (in Chinese). Yu, N., Jin, W., Ge, W.C., et al., 2005. Geochemical study on peraluminous granite from Jinshuikou in east Kunlun. Global Geology, 24(2): 123-128 (in Chinese with English abstract). Zhang, B.R., Gao, S., Zhang, H.F., et al., 2002. Geochemistry of Qingling orogenic belt. Science Press, Beijing (in Chinese). Zhang, H.F., Gao, S., Zhong, Z.Q., et al., 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustalst ructure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 186(3-4): 281-299. doi: 10.1016/S0009-2541(02)00006-2 Zhang, H.F., Ouyang, J.P., Ling, W.L., et al., 1996. Tectonic division of Douling massif of east Qingling by Pb isotopic compositional characteristics. Earth Science—Journal of China University of Geosciences, 21(5): 487-490 (in Chinese with English abstract). Zhang, J.X., Meng, F.C., Wan, Y.S., et al., 2003. Early Paleozoic tectono-thermal event of the Jinshuikou Group on the southern margin of Qaidam: zircon U-Pb SHRIMP age evidence. Geological Bulletin of China, 22(6): 397-404 (in Chinese with English abstract). Zhang, L.G. ., Liu, J.X., Wang, K.F., et al., 1995. Block-geology of eastern Asia lithosphere-isotopic geochemistry and dynamics of upper mantle, basement and granite. Science Press, Beijing, 252 (in Chinese). Zhang, L.G., Wang, K.F., Chen, Z.S., et al., 1993. Feldspar lead isotopic composition of Mesozoic granitoids and lead isotopic provinces of eastern China. Chinese Science Bulletin, 38(3): 254-257 (in Chinese with English abstract). doi: 10.1360/csb1993-38-3-254 Zheng, Y.F., Zhang, S.B., 2007. Formation and evolution of Precambrian continental crust in South China. Chinese Science Bulletin, 52(1): 1-10 (in Chinese with English abstract). doi: 10.1007/s11434-007-0015-5 Zhu, B.Q., 1993. Tri-dimension special topological diagrams of ore lead isotopes and their application to the division of geochemical provinces and mineralizations. Geochimica, (3): 209-216 (in Chinese with English abstract). Zumsteg, C.L., Himmelbery, G.R., Karl, S.M., et al., 2003. Metamorphism within the Chugach accretionary complex on the southern Baranof Island, southeastern Alaska. In: Sisson, V.B., Roeske, S.M., Pavlis, T.L., eds., Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Geol. Soc. Am. Special Paper, 371: 253-268. 陈能松, 何蕾, 孙敏, 等, 2002. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确确定. 科学通报, 47(8): 628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016 陈能松, 李晓彦, 王新宇, 等, 2006a. 柴达木地块南缘昆北单元变质新元古代花岗锆石SHRIMP U-Pb年龄. 地质通报, 25(11): 1311-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200611009.htm 陈能松, 李晓彦, 张克信, 等, 2006b. 东昆仑山香日德南部白沙河岩组的岩石组合特征和形成年代的锆石Pb-Pb定年启示. 地质科技情报, 25(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200606000.htm 陈能松, 王勤燕, 陈强, 等, 2007a. 柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古陆演化关系初探. 地学前缘, 14: 43-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701003.htm 陈能松, 王新宇, 张宏飞, 等, 2007b. 柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成: 基底性质和构造属性启示. 地球科学——中国地质大学学报, 32(1): 7-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701001.htm 李献华, 赵振华, 桂训唐, 等, 1991. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约. 地球化学, 20(3): 255-264. doi: 10.3321/j.issn:0379-1726.1991.03.007 廖忠礼, 莫宣学, 潘桂棠, 等, 2006. 初论西藏过铝花岗岩. 地质通报, 25(7): 812-821. doi: 10.3969/j.issn.1671-2552.2006.07.007 刘永成, 叶永福, 1998. 对东昆仑金水口地区高级变质岩的新认识. 青海地质, 2(1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199801002.htm 龙晓平, 金巍, 葛文春, 等, 2006. 东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义. 地球化学, 35(4): 333-345. doi: 10.3321/j.issn:0379-1726.2006.04.001 陆松年, 于海峰, 赵凤清, 等, 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社. 青海省地质矿产局, 1997. 青海省岩石地层. 武汉: 中国地质大学出版社, 21-25. 殷鸿福, 张克信, 陈能松, 等, 2003. 中华人民共和国区域地质调查报告(1∶25万冬给措纳湖幅). 武汉: 中国地质大学出版社. 余能, 金巍, 葛文春, 等, 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(2): 123-128. doi: 10.3969/j.issn.1004-5589.2005.02.004 张本仁, 高山, 张宏飞, 等, 2002. 秦岭造山带地球化学. 北京: 科学出版社. 张宏飞, 欧阳建平, 凌文黎, 等, 1996. 从Pb同位素组成特征论东秦岭陡岭块体的构造归属. 地球科学——中国地质大学学报, 21(5): 487-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX605.006.htm 张理刚, 刘敬秀, 王可法, 等, 1995. 东亚岩石圈块体地质: 上地幔基底和花岗岩同位素地球化学及其动力学. 北京: 科学出版社, 252. 张理刚, 王可法, 陈振胜, 等, 1993. 中国东部中生代花岗岩长石铅同位素组成与同位素省划分. 科学通报, 38(3): 254-257. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199303019.htm 张建新, 孟繁聪, 万渝生, 等, 2003. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据. 地质通报, 22(6): 397-404. doi: 10.3969/j.issn.1671-2552.2003.06.004 郑永飞, 张少兵, 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10. doi: 10.3321/j.issn:0023-074X.2007.01.001 朱炳泉, 1993. 矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种区划. 地球化学, (3): 209-216. doi: 10.3321/j.issn:0379-1726.1993.03.001