• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广西那坡裂陷盆地晚古生代硅质岩地球化学特征及其地质意义

    黄志强 黄虎 杜远生 杨江海 黄宏伟 胡丽沙 谢春霞

    黄志强, 黄虎, 杜远生, 杨江海, 黄宏伟, 胡丽沙, 谢春霞, 2013. 广西那坡裂陷盆地晚古生代硅质岩地球化学特征及其地质意义. 地球科学, 38(2): 253-265. doi: 10.3799/dqkx.2013.026
    引用本文: 黄志强, 黄虎, 杜远生, 杨江海, 黄宏伟, 胡丽沙, 谢春霞, 2013. 广西那坡裂陷盆地晚古生代硅质岩地球化学特征及其地质意义. 地球科学, 38(2): 253-265. doi: 10.3799/dqkx.2013.026
    HUANG Zhi-qiang, HUANG Hu, DU Yuan-sheng, YANG Jiang-hai, HUANG Hong-wei, HU Li-sha, XIE Chun-xia, 2013. Depositional Chemistry of Cherts of the Late Paleozoic in Napo Rift Basin, Guangxi and Its Implication for the Tectonic Evolution. Earth Science, 38(2): 253-265. doi: 10.3799/dqkx.2013.026
    Citation: HUANG Zhi-qiang, HUANG Hu, DU Yuan-sheng, YANG Jiang-hai, HUANG Hong-wei, HU Li-sha, XIE Chun-xia, 2013. Depositional Chemistry of Cherts of the Late Paleozoic in Napo Rift Basin, Guangxi and Its Implication for the Tectonic Evolution. Earth Science, 38(2): 253-265. doi: 10.3799/dqkx.2013.026

    广西那坡裂陷盆地晚古生代硅质岩地球化学特征及其地质意义

    doi: 10.3799/dqkx.2013.026
    基金项目: 

    国家自然科学基金项目 41272120

    国家自然科学基金项目 40972078

    高等学校学科创新引智计划 B08030

    广西自然科学基金项目 0448031

    详细信息
      作者简介:

      黄志强(1963-)男,博士研究生,主要从事沉积地球化学研究.E-mail: huangzqgx@263.net

      通讯作者:

      杜远生,E-mail: duyuansheng126@126.com

    • 中图分类号: P534.4

    Depositional Chemistry of Cherts of the Late Paleozoic in Napo Rift Basin, Guangxi and Its Implication for the Tectonic Evolution

    • 摘要: 广西那坡裂陷盆地位于右江盆地南缘,晚古生代该盆地广泛分布包括硅质岩、泥岩和海相玄武岩在内的深水相沉积.对盆地内上泥盆统榴江组和中下二叠统四大寨组硅质岩地球化学特征研究表明,硅质岩SiO2含量为88.55%~99.03%,PAAS组成含量小于20%,指示其含有较低的陆源碎屑组成.硅质岩的Al/(Al+Fe+Mn)值为0.45~0.94,Eu/Eu*值为0.51~0.95,为非热液成因硅质岩.除去SiO2稀释作用的影响后,硅质岩具有较高的稀土元素含量(∑REE+Y含量相当于PAAS组成的2~5倍),指示其形成于相对远离陆源供应的环境.岩信和鱼塘上泥盆统榴江组硅质岩具有中等的Ce负异常(Ce/Ce*值分别为0.37~0.72和0.58~0.89)以及较明显的Y正异常(Y/Ho值分别为39.05~83.74和34.33~36.70),形成于远离陆源的开阔裂谷盆地环境.鱼塘中下二叠统四大寨组硅质岩具有明显的Ce负异常(Ce/Ce*值为0.12~0.33),显示成熟洋盆的地球化学特征.结合右江其他地区硅质岩的地球化学特征认为,晚古生代硅质岩的地球化学特征记录了右江盆地从晚泥盆世裂谷盆地到早中二叠世扩张为开阔洋盆的过程.

       

    • 图  1  右江地区构造格架图(a) (据杜远生等, 2009)和那坡地区地质略图及采样位置(b)

      D1-2p.中下泥盆统平恩组;D2d.中泥盆统东岗岭组;D3r.上泥盆统融县组;D3l.上泥盆统榴江组;D3w.上泥盆统五指山组;C.石炭系;P1-2s.中下二叠统四大寨组;P3lh.上二叠统领薅组;T1s.下三叠统石炮组;T2bf.中三叠统百逢组;C-Pm.石炭系-二叠系构造混杂岩;Cβ.石炭系玄武岩;P1-2β.中下二叠统玄武岩;P3β.上二叠统玄武岩;T1-2β.中下三叠统中基性火山岩

      Fig.  1.  Tectonic framework of the Youjiang basin (a) and the geological sketch map of Napo and sample location (b)

      图  2  那坡裂陷盆地上古生界地层柱状图

      Fig.  2.  Stratigraphic columns of the Napo rift basin during the Late Paleozoic

      图  3  Al2O3-SiO2/Al2O3图(据黄虎等,2013)

      Fig.  3.  Al2O3 vs SiO2/Al2O3

      图  4  硅质沉积物页岩标准化稀土模式曲线

      巢湖孤峰组硅质岩数据据Kametaka et al., 2005;陆缘硅质岩来自美国Shoo Fly杂岩,数据据Girty et al., 1996;远洋硅质岩来自日本Sasayama地块,数据据Kato et al., 2002;海水为太平洋海水(水深5~2 576 m),数据据Alibo and Nozaki, 1999;PAAS标准化数据据McLennan, 1989

      Fig.  4.  REE+Y patterns of the analyzed samples normalized to PAAS

      图  5  硅质岩Al-Fe-Mn三角图(据Adachi et al., 1986)

      Fig.  5.  Al-Fe-Mn diagram of cherts

      图  6  硅质岩Al/(Al+Fe+Mn)-Al2O3/TiO2

      1.长英质火山岩;2.安山岩;3.玄武岩;4.热液硅质岩;5.热液瓷状硅质岩;6.上地壳;7.NASC;8.PAAS;其他图例同图 3;热液硅质岩和热液瓷状硅质岩数据据Adachi et al., 1986;长英质火山岩、安山岩、玄武岩数据据Condie, 1993;NASC数据据Gromet et al., 1984;PAAS数据据Taylor and McLennan, 1985

      Fig.  6.  Al/(Al+Fe+Mn)-Al2O3/TiO2 diagram of cherts

      图  7  硅质岩(∑REE+Y)-SiO2/Al2O3 (据黄虎等,2012)(图例同图 3图 4d)

      Fig.  7.  (∑REE+Y)-SiO2/Al2O3 diagram of cherts

      图  8  右江盆地晚古生代硅质岩Ce/Ce*值分布

      普安龙吟、紫云四大寨、南丹罗富和河池九圩硅质岩数据据黄虎等,2012;田林八渡硅质岩数据据黄虎等,2013;南宁硅质岩数据据王卓卓等, 2007;洋脊、远洋和大陆边缘硅质岩据Murray et al., 1991

      Fig.  8.  The Ce/Ce* values form the Youjiang basin during the Late Paleozoic

      图  9  右江盆地晚泥盆世-中二叠世构造演化

      1.大陆地壳;2.大洋地壳;3.地幔岩石圈;4.碳酸盐岩台地;5.硅质岩和泥岩;6.硅质岩和灰岩;7.采样位置

      Fig.  9.  The tectonic evolution from the Late Devonian to Middle Permian of the Youjiang basin

      表  1  那坡裂陷盆地硅质岩样品的主量元素(%)和稀土元素含量(10-6)

      Table  1.   Major and rare earth element data of cherts from Napo rift basin

      样号 Dy2 Dy4 Dy5 Dy6 Dy9 Dy12 Dnt1 Dnt2 Dnt3 Dnt4 Dnt5 Dnt8 Dnt9 Pnt27 Pnt28 Pnt29 Pnt30 Pnt31
      SiO2 95.91 98.98 98.80 98.71 98.31 99.03 98.13 97.90 97.68 97.64 97.49 88.55 91.05 94.46 92.13 93.03 94.29 93.79
      TiO2 0.04 0.05 0.05 0.04 0.05 0.02 0.05 0.05 0.07 0.05 0.06 0.09 0.13 0.06 0.06 0.07 0.07 0.05
      Al2O3 0.67 0.33 0.36 0.40 0.65 0.35 0.98 0.87 1.15 1.27 1.26 4.57 3.63 2.21 3.37 2.89 2.24 2.20
      Fe2O3 0.33 0.31 0.28 0.16 0.24 0.17 0.05 0.07 0.23 0.07 0.08 1.98 1.19 0.62 0.76 0.78 0.80 0.80
      MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.01
      MgO 0.09 0.06 0.05 0.05 0.08 0.05 0.09 0.08 0.11 0.12 0.13 0.39 0.45 1.43 1.72 1.44 1.32 1.62
      CaO 0.53 0.04 0.02 0.25 0.04 0.06 0.02 0.03 0.02 0.02 0.03 0.04 0.06 0.02 0.02 0.03 0.02 0.16
      Na2O 0.01 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.07 0.14 0.00 0.01 0.01 0.00 0.02
      K2O 0.25 0.10 0.10 0.11 0.20 0.11 0.18 0.16 0.22 0.22 0.22 2.07 2.02 0.49 0.82 0.73 0.53 0.41
      P2O5 0.04 0.01 0.01 0.15 0.05 0.05 0.02 0.01 0.03 0.01 0.02 0.04 0.04 0.01 0.01 0.01 0.01 0.01
      LOI 2.40 0.45 0.50 0.44 0.73 0.39 0.55 0.50 0.64 0.67 0.67 1.95 1.13 1.01 1.43 1.22 1.06 1.27
      100.27 100.33 100.18 100.32 100.35 100.23 100.09 99.68 100.15 100.08 99.96 99.76 99.86 100.31 100.33 100.21 100.35 100.34
      Al* 0.61 0.45 0.49 0.65 0.67 0.61 0.94 0.90 0.79 0.93 0.92 0.63 0.69 0.73 0.77 0.74 0.68 0.67
      Al2O3/TiO2 16.75 6.60 7.20 10.00 13.00 17.50 19.60 17.40 16.43 25.40 21.00 50.78 27.92 36.83 56.17 41.29 32.00 44.00
      La 3.97 2.81 2.50 9.00 3.65 2.68 5.06 5.52 10.24 7.41 8.27 25.39 12.02 10.73 30.28 32.49 10.55 14.77
      Ce 4.85 3.45 3.06 6.14 5.56 2.83 6.39 6.82 11.76 8.92 10.24 38.08 22.04 3.67 12.73 8.66 6.78 8.71
      Pr 0.94 0.45 0.42 1.56 0.88 0.61 1.16 1.25 2.39 1.69 1.98 6.85 2.72 2.18 6.24 8.24 2.13 3.12
      Nd 3.74 1.64 1.46 6.44 3.54 2.44 4.45 4.75 9.54 6.61 7.97 28.20 10.93 9.02 25.48 33.73 8.23 12.64
      Sm 0.70 0.23 0.21 1.19 0.60 0.52 0.91 0.95 1.72 1.07 1.59 6.07 2.19 2.25 5.57 7.03 1.92 2.99
      Eu 0.18 0.05 0.04 0.21 0.16 0.10 0.18 0.23 0.37 0.23 0.39 1.95 0.53 0.84 1.90 1.81 0.63 1.08
      Gd 0.70 0.21 0.21 1.37 0.60 0.49 0.98 1.29 2.10 1.11 2.20 6.49 2.03 3.73 7.73 6.84 2.87 5.06
      Tb 0.10 0.03 0.04 0.20 0.11 0.08 0.16 0.23 0.41 0.17 0.46 1.04 0.28 0.70 1.24 1.01 0.51 0.91
      Dy 0.66 0.22 0.22 1.30 0.68 0.46 1.15 1.78 3.00 1.03 3.46 5.72 1.55 4.17 6.93 5.19 3.01 5.38
      Ho 0.12 0.04 0.04 0.26 0.15 0.09 0.26 0.39 0.68 0.24 0.83 1.11 0.27 0.75 1.18 0.87 0.56 0.97
      Er 0.34 0.14 0.13 0.78 0.51 0.29 0.80 1.22 2.03 0.72 2.51 2.86 0.77 1.79 2.87 2.15 1.37 2.28
      Tm 0.05 0.02 0.02 0.10 0.08 0.04 0.12 0.18 0.30 0.11 0.37 0.38 0.12 0.23 0.36 0.26 0.18 0.28
      Yb 0.30 0.15 0.14 0.70 0.55 0.23 0.83 1.19 1.91 0.82 2.34 2.36 0.70 1.28 1.93 1.40 0.95 1.42
      Lu 0.04 0.02 0.02 0.09 0.07 0.04 0.14 0.17 0.29 0.14 0.33 0.36 0.11 0.18 0.27 0.19 0.14 0.21
      Y 5.60 2.27 2.23 14.21 6.04 7.24 8.36 13.36 23.21 7.80 29.87 36.97 9.02 26.13 41.16 30.88 20.61 33.30
      Y/Ho 45.24 51.71 55.32 53.89 39.05 83.74 32.70 34.22 34.05 32.32 36.16 33.37 34.01 34.84 34.87 35.60 36.70 34.33
      Ce/Ce* 0.58 0.69 0.68 0.37 0.72 0.51 0.61 0.60 0.55 0.58 0.58 0.66 0.89 0.17 0.21 0.12 0.33 0.30
      Eu/Eu* 0.79 0.66 0.65 0.51 0.80 0.59 0.59 0.63 0.59 0.64 0.63 0.95 0.76 0.88 0.88 0.80 0.82 0.85
      REE+Y 22.29 11.74 10.73 43.56 23.19 18.12 30.97 39.35 69.93 38.06 72.81 163.80 65.27 67.64 145.9 140.7 60.45 93.11
          注:Al*=Al/(Al+Fe+Mn).
      下载: 导出CSV
    • Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. doi: 10.1016/0037-0738(86)90075-8
      Alibo, D.S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. doi. org/10.1016/S0016-7037(98)00279-8 doi: 10.1016/S0016-7037(98)00279-8
      Bostrom, K., Peterson, M.N.A., 1969. The Origin of Aluminum-Poor Ferromanganoan Sediments in Areas of High Heat Flow on the East Pacific Rise. Marine Geology, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4
      Chen, D.Z., Qing, H.R., Yan, X., et al., 2006. Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sedimentary Geology, 183(3-4): 203-216. doi. org/10.1016/j. sedgeo. 2005.09.020 doi: 10.1016/j.sedgeo.2005.09.020
      Chen, H.D., Zeng, Y.F., 1989. Depositional Characteristics and Genesis of Upper Devonian Silicalites in Danchi Basin, Guangxi. Minerals and Rocks, 9(4): 22-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198904003.htm
      Chen, H.D., Zeng, Y.F., 1990. Nature and Evolution of the Youjiang Basin. Sedimentary Facies and Paleogeography, 1(1): 28-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD199001003.htm
      Chen, H.D., Qin, J.X., Tian, J.C. et al., 2000. Sequence Filling Dynamics of Youjiang Basin, Southern China. Acta Sedimentologica Sinica, 18(2): 165-171 (in Chinese with English abstract).
      Condie, K.C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E
      Dias, Á. S., Früh-Green, G.L., Bernasconi, S.M., et al., 2011. Geochemistry and Stable Isotope Constraints on High Temperature Activity from Sediment Cores of the Saldanha Hydrothermal Field. Marine Geology, 279128-140. doi. org/10.1016/j. margeo. 2010.10.017 http://adsabs.harvard.edu/abs/2011MGeol.279..128D
      Ding, L., Zhong, D.L., 1996. Characteristics of Rare Earth Elements and Cerium Anomalies in Cherts from the Paleo-Tethys in Changning-Menglian Belt in Western Yunnan, China. Science in China Series D: Earth Sciences, 39(1): 35-45.
      Douville, E., Bienvenu, P., Charlou, J.L., et al., 1999. Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica et Cosmochimica Acta, 63(5): 627-643. doi. org/10.1016/S0016-7037(99)00024-1 doi: 10.1016/S0016-7037(99)00024-1
      Du, Y.S., Huang, H.W., Huang, Z.Q., et al., 2009. Basin Translation from Late Palaeozoic to Triassic of Youjiang Basin and Its Tectonic Significance. Geological Science and Technology Information, 28(6): 10-15 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200906002.htm
      Feng, Q.L., Liu, B.P., 2002. Early Permian Radiolarians from Babu Ophiolitic Mélange in Southeastern Yunnan. Earth Science—Journal of China University of Geosciences, 27(1): 1-3 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200201000.htm
      German, C.R., Hergt, J., Palmer, M.R., et al., 1999. Geochemistry of a Hydrothermal Sediment Core from the OBS Vent-Field, 21°N East Pacific Rise. Chemical Geology, 155(1): 65-75. doi. org/10.1016/S0009-2541(98)00141-7 http://www.sciencedirect.com/science/article/pii/S0009254198001417
      Girty, G.H., Ridge, D.L., Knaack, C., et al., 1996. Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66(1): 107-118. doi: 10.1306/D42682CA-2B26-11D7-8648000102C1865D
      Gromet, L.P., Haskin, L.A., Korotev, R.L. et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. doi. org/10.1016/0016-7037(84)90298-9 doi: 10.1016/0016-7037(84)90298-9
      Guo, F., Fan, W.M., Wang, Y.J., et al., 2004. Upper Paleozoic Basalts in the Southern Yangtze Block: Geochemical and Sr-Nd Isotopic Evidence for Asthenosphere-Lithosphere Interaction and Opening of the Paleo-Tethyan Ocean. International Geology Review, 46(4): 332-346. doi: 10.2747/0020-6814.46.4.332
      Hayashi, K.I., Fujisawa, H., Holland, H.D., et al., 1997. Geochemistry of 1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115-4137. doi: 10.1016/S0016-7037(97)00214-7
      He, B., Xu, Y.G., Zhong, Y.T., et al., 2010. The Guadalupian-Lopingian Boundary Mudstones at Chaotian (SW China) Are Clastic Rocks Rather than Acidic Tuffs: Implication for a Temporal Coincidence between the End-Guadalupian Mass Extinction and the Emeishan Volcanism. Lithos, 119(1-2): 10-19. doi: 10.1016/j.lithos.2010.06.001
      Holser, W.T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1): 309-323. doi. org/10.1016/S0031-0182(97)00069-2 http://www.sciencedirect.com/science/article/pii/S0031018297000692
      Huang, H., Du, Y.S., Huang, Z.Q., et al., 2013. Depositional Chemistry of Chert During Late Paleozoic from Western Guangxi and Its Implication for the Tectonic Evolution of the Youjiang Basin. Science China Earth Sciences, 56(3): 479-493. doi. org/10.1007/s11430-012-4496-y doi: 10.1007/s11430-012-4496-y
      Huang, H., Du, Y.S., Yang, J.H. et al., 2012. Depositional Chemistry of Siliceous Deposits of Shuicheng-Ziyun-Nandan Rift Basin in the Late Paleozoic and Its Implication for the Tectonic Evolution. Acta Geologica Sinica, 86(12): 1994-2010 (in Chinese with English abstract).
      Kamber, B.S., Greig, A., Collerson, K.D., 2005. A New Estimate for the Composition of Weathered Young Upper Continental Crust from Alluvial Sediments, Queensland, Australia. Geochimica et Cosmochimica Acta, 69(4): 1041-1058. doi. org/10.1016/j. gca. 2004.08.020 doi: 10.1016/j.gca.2004.08.020
      Kametaka, M., Takebe, M., Nagai, H., et al., 2005. Sedimentary Environments of the Middle Permian Phosphorite-Chert Complex From the Northeastern Yangtze Platform, China; The Gufeng Formation: A Continental Shelf Radiolarian Chert. Sedimentary Geology, 174(3-4): 197-222. doi. org/10.1016/j. sedgeo. 2004.12.005 doi: 10.1016/j.sedgeo.2004.12.005
      Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 182(1): 15-34. doi. org/10.1016/S0009-2541(01)00273-X doi: 10.1016/S0009-2541(01)00273-X
      Kato, Y., Nakamura, K., 2003. Origin and Global Tectonic Significance of Early Archean Cherts from the Marble Bar Greenstone Belt, Pilbara Craton, Western Australia. Precambrian Research, 125(3-4): 191-243. doi. org/10.1016/S0301-9268(03)00043-3 doi: 10.1016/S0301-9268(03)00043-3
      Kuang, G.D., Wu, H.R., 2002. Late Paleozoic Strata of Deep-Water Facies in Western Guangxi. Scientia Geologica Sinica, 37(2): 152-164 (in Chinese with English abstract).
      Lawrence, M.G., Greig, A., Collerson, K.D., et al., 2006. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquatic Geochemistry, 12(1): 39-72. doi: 10.1007/s10498-005-4471-8
      Lehrmann, D.J., Donghong, P., Enos, P., et al., 2007. Impact of Differential Tectonic Subsidence on Isolated Carbonate-Platform Evolution: Triassic of the Nanpanjiang Basin, South China. The American Association of Petroleum Geologists, 91(3): 287-320. doi: 10.1306/10160606065
      Lei, Z., Kyte, F.T., 1988. The Permian-Triassic Boundary Event: A Geochemical Study of Three Chinese Sections. Earth and Planetary Science Letters, 90(4): 411-421. doi: 10.1016/0012-821X(88)90139-2
      Liu, B.J., Xu, X.S., Pan, X.N., et al., 1993. Paleocontinental Sedimentary Crustal Evolution and Mineralization in South China. Science Press, Beijing (in Chinese).
      Liu, Y.G., Miah, M., Schmitt, R.A., 1988. Cerium: A Chemical Tracer for Paleo-Oceanic Redox Conditions. Geochimica et Cosmochimica Acta, 52(6): 1361-1371. doi. org/10.1016/0016-7037(88)90207-4 doi: 10.1016/0016-7037(88)90207-4
      Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
      McLennan, S.M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In: Lipin, B.R., McKay, G.A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy and Geochemistry, 21: 169-200. http://www.researchgate.net/publication/313503357_Rare_earth_elements_in_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes
      Murray, R.W., Buchholtz Ten Brink, M.R., Jones, D.L., et al., 1990. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale. Geology, 18(3): 268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2
      Murray, R.W., Buchholtz Ten Brink, M.R., Gerlach, D.C., et al., 1991. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California: Assessing REE Sources to Fine-Grained Marine Sediments. Geochimica et Cosmochimica Acta, 55(7): 1875-1895. doi. org/10.1016/0016-7037(91)90030-9 doi: 10.1016/0016-7037(91)90030-9
      Murray, R.W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3-4): 213-232. doi: 10.1016/0037-0738(94)90039-6
      Nozaki, Y., Zhang, J., Amakawa, H., 1997. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 148(1-2): 329-340. doi. org/10.1016/S0012-821X(97)00034-4 doi: 10.1016/S0012-821X(97)00034-4
      Owen, A.W., Armstrong, H.A., Floyd, J.D., 1999. Rare Earth Element Geochemistry of Upper Ordovician Cherts from the Southern Uplands of Scotland. Journal of the Geological Society, 156(1): 191-204. doi: 10.1144/gsjgs.156.1.0191
      Qin, J.H., Wu, Y.L., Yan, Y.J., et al., 1996. Hercynian-Indosinian Sedimentary-Tectonic Evolution of the Nanpanjiang Basin. Acta Geologica Sinica, 70(2): 99-107 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZXW199604000
      Qiu, Z., Wang, Q.C., 2011. Geochemical Evidence for Submarine Hydrothermal Origin of the Middle-Upper Permian Chert in Laibin of Guangxi, China. Science China Earth Sciences, 54(7): 1011-1023. doi: 10.1007/s11430-011-4198-x
      Ren, G.M., Wang, P., Zhang, L.K., et al., 2011. Discussion on Geochemical Characteristics and Sedimentary Environment of the Fransnian Radiolarian Chert in Southeastern Yunnan. Geological Review, 57(4): 505-514 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201104006.htm
      Shimizu, H., Kunimaru, T., Yoneda, S., et al., 2001. Sources and Depositional Environments of Some Permian and Triassic Cherts: Significance of Rb-Sr and Sm-Nd Isotopic and REE Abundance Data. The Journal of Geology, 109(1): 105-125. doi: 10.1086/317961
      Sugisaki, R., Yamamoto, K., Adachi, M., 1982. Triassic Bedded Cherts in Central Japan Are Not Pelagic. Nature, 298644-647. doi: 10.1038/298644a0
      Sugitani, K., Horiuchi, Y., Adachi, M., et al., 1996. Anomalously Low Al2O3/TiO2 Values for Archean Cherts from the Pilbara Block, Western Australia-Possible Evidence for Extensive Chemical Weathering on the Early Earth. Precambrian Research, 80(1): 49-76. doi. org/10.1016/S0301-9268(96)00005-8 http://www.sciencedirect.com/science/article/pii/S0301926896000058
      Tanaka, K., Takahashi, Y., Shimizu, H., 2008. Local Structure of Y and Ho in Calcite and Its Relevance to Y Fractionation from Ho in Partitioning between Calcite and Aqueous Solution. Chemical Geology, 248(1): 104-113. doi. org/10.1016/j. chemgeo. 2007.11.003 http://www.sciencedirect.com/science/article/pii/S0009254107004871
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Wang, Z.C., Wu, H.R., Kuang, G.D., 1997. Characteristics of the Late Paleozoic Oceanic Basalts and Their Eruptive Environments in West Guangxi. Acta Petrologica Sinica, 13(2): 260-265 (in Chinese with English abstract). http://www.researchgate.net/publication/291120108_Characteristics_of_the_late_paleozoic_oceanic_basalts_and_their_eruptive_environments_in_West_Guangxi
      Wang, Z.Z., Chen, D.Z., Wang, J.G., 2007. REE Geochemistry and Depositional Settings of the Devonian Cherts in Nanning Area, Guangxi. Scientia Geologica Sinica, 42(3): 558-569 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200703013.htm
      Wu, G.Y., Wu, H.R., Zhong, D.L., et al., 2000. Volcanic Rocks of Paleotethyan Oceanic Island and Island-Arc Bordering Yunnan and Guangxi, China. Geosciences, 14(4): 393-400 (in Chinese with English abstract). http://www.researchgate.net/publication/284486374_Volcanic_rocks_of_Paleotethyan_oceanic_island_and_island-arc_bordering_Yunnan_and_Guangxi_China
      Wu, G.Y., Ma, L., Zhong, D.L., et al., 2001. Indosinian Turkic-Type Orogen Bordering Yunnan and Guangxi: With Reference to Coupled Basin Evolution. Petroleum Geology & Experiment, 23(1): 8-18 (in Chinese with English abstract). http://www.researchgate.net/publication/291091840_Indosinian_Turkic-type_orogen_bordering_Yunnan_and_Guangxi_with_reference_to_coupled_basin_evolution
      Wu, H.R., Kuang, G.D., Wang, Z.C., 1997. Preliminary Study of Late Paleozoic Tectonic Sedimentary Aettings in Guangxi. Scientia Geologica Sinica, 32(1): 11-18 (in Chinese with English abstract). http://www.researchgate.net/publication/285031302_Preliminary_study_of_Late_Paleozoic_tectonic_sedimentary_settings_in_Guangxi_in_Chinese
      Wu, H.R., 2003. Discussion on Tectonic Palaeogeography of Nanpanjiang Sea in the Late Palaeozoic and Triassic. Journal of Palaeogeography, 5(1): 63-76 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GDLX200301005&dbcode=CJFD&year=2003&dflag=pdfdown
      Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1-2): 65-108. doi: 10.1016/0037-0738(87)90017-0
      Yin, H.F., Wu, S.B., Du, Y.S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science—Journal of China University of Geosciences, 24(1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX901.000.htm
      Zeng, Y.F., Liu, W.J., Chen, H.D., et al., 1995. Evolution of Sedimentation and Tectonics of the Youjiang Composite Basin, South China. Acta Geologica Sinica, 69(2): 113-124 (in Chinese with English abstract). http://www.cqvip.com/QK/86253X/199504/1004939319.html
      Zhong, D.L., Wu, G.Y., Ji, J.Q., et al., 1999. Discovery of Ophiolite in Southeast Yunnan, China. Chinese Science Bulletin, 44(1): 36-41. doi: 10.1007/BF03182880
      Zhou, Y.Z., 1990. On Sedimentary Geochemistry of Siliceous Rocks Originated from Thermal Water in Nandan-Hechi Basin. Acta Sedimentologica Sinica, 8(3): 75-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199003006.htm
      陈洪德, 曾允孚, 1989. 广西丹池盆地上泥盆统榴江组硅质岩沉积特征及成因讨论. 矿物岩石, 9(4): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198904003.htm
      陈洪德, 曾允孚, 1990. 右江沉积盆地的性质及演化讨论. 岩相古地理, 1(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199001003.htm
      陈洪德, 覃建雄, 田景春, 等, 2000. 右江盆地层序充填动力学初探. 沉积学报, 18(2): 165-171. doi: 10.3969/j.issn.1000-0550.2000.02.001
      丁林, 钟大赉, 1995. 滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和铈异常特征. 中国科学: 化学, 25(1): 93-100. doi: 10.3321/j.issn:1006-9240.1995.01.005
      杜远生, 黄宏伟, 黄志强, 等, 2009. 右江盆地晚古生代-三叠纪盆地转换及其构造意义. 地质科技情报, 28(6): 10-15. doi: 10.3969/j.issn.1000-7849.2009.06.002
      冯庆来, 刘本培, 2002. 滇东南八布蛇绿混杂岩中的早二叠世放射虫化石. 地球科学——中国地质大学学报, 27(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201000.htm
      黄虎, 杜远生, 黄志强, 等, 2013. 桂西晚古生代硅质岩地球化学特征及其对右江盆地构造演化的启示. 中国科学: 地球科学, 43(2): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201302015.htm
      黄虎, 杜远生, 杨江海, 等, 2012. 水城-紫云-南丹裂陷盆地晚古生代硅质沉积物地球化学特征及其地质意义. 地质学报, 86(12): 1994-2010. doi: 10.3969/j.issn.0001-5717.2012.12.010
      邝国敦, 吴浩若, 2002. 桂西晚古生代深水相地层. 地质科学, 37(2): 152-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200202002.htm
      刘宝珺, 许效松, 潘杏南, 等, 1993. 中国南方古大陆沉积地壳演化与成矿. 北京: 科学出版社, 42-46.
      秦建华, 吴应林, 颜仰基, 等, 1996. 南盘江盆地海西-印支期沉积构造演化. 地质学报, 70(2): 99-107. doi: 10.3321/j.issn:0001-5717.1996.02.001
      邱振, 王清晨, 2011. 广西来宾中上二叠统硅质岩海底热液成因的地球化学证据. 中国科学(D辑), 41(5): 725-737. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105011.htm
      任光明, 王鹏, 张林奎, 等, 2011. 滇东南弗拉斯期放射虫硅质岩地球化学特征及沉积环境探讨. 地质论评, 57(4): 505-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201104006.htm
      王忠诚, 吴浩若, 邝国敦, 1997. 桂西晚古生代海相玄武岩的特征及其形成环境. 岩石学报, 13(2): 260-265. doi: 10.3321/j.issn:1000-0569.1997.02.015
      王卓卓, 陈代钊, 汪建国, 2007. 广西南宁地区泥盆纪硅质岩稀土元素地球化学特征及沉积背景. 地质科学, 42(3): 558-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200703013.htm
      吴根耀, 吴浩若, 钟大赉, 等, 2000. 滇桂交界处古特提斯的洋岛和岛弧火山岩. 现代地质, 14(4): 393-400. doi: 10.3969/j.issn.1000-8527.2000.04.002
      吴根耀, 马力, 钟大赉, 等, 2001. 滇桂交界区印支期增生弧型造山带: 兼论与造山作用耦合的盆地演化. 石油实验地质, 23(1): 8-18. doi: 10.3969/j.issn.1001-6112.2001.01.002
      吴浩若, 邝国敦, 王忠诚, 1997. 广西晚古生代构造沉积背景的初步研究. 地质科学, 32(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199701001.htm
      吴浩若, 2003. 晚古生代-三叠纪南盘江海的构造古地理问题. 古地理学报, 5(1): 63-76. doi: 10.3969/j.issn.1671-1505.2003.01.006
      殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学——中国地质大学学报, 24(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm
      曾允孚, 刘文均, 陈洪德, 等, 1995. 华南右江复合盆地的沉积构造演化. 地质学报, 69(2): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199502001.htm
      钟大赉, 吴根耀, 季建清, 等, 1998. 滇东南发现蛇绿岩. 科学通报, 43(13): 1365-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199813003.htm
      周永章, 1990. 丹池盆地热水成因硅岩的沉积地球化学特征. 沉积学报, 8(3): 75-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199003006.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3345
    • HTML全文浏览量:  591
    • PDF下载量:  418
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-07-20
    • 刊出日期:  2013-03-01

    目录

      /

      返回文章
      返回