The Origin and Evolution of the Houshihushan Alkaline Ring Complex in the Yanshan Orogenic Belt
-
摘要: 后石湖山杂岩体是与垮塌破火山口有关的碱性环状杂岩体, 主要由呈环形分布的碱性火山岩、环状岩墙(斑状石英正长岩)、嵌套的中心复式岩株(晶洞碱长花岗岩和斑状碱长花岗岩)和锥状岩席(石英正长斑岩和花岗斑岩)组成.LA-ICPMS锆石U-Pb年代学分析表明, 斑状石英正长岩环状岩墙、石英正长斑岩和花岗斑岩锥状岩席的侵位年龄分别为119±3Ma、121±2Ma和121±2Ma.该环状杂岩体火山岩与侵入岩的形成年龄相近, 体现了它作为火山-侵入杂岩体的特征.斑状石英正长岩富碱(Na2O+K2O=10.0%~10.5%), K2O含量较高(5.21%~5.42%), 具正的Eu异常(Eu/Eu*=1.05~1.40).碱长花岗岩和斑岩均具有富碱、高FeOtot/MgO、Ga/Al、Zr、Nb和REE值(Eu除外), 以及低Al2O3、CaO、MgO、Ba、Sr和Eu含量的特征, 都属于A型花岗岩质岩石.其中斑岩为铝质A型花岗岩, 具有高的初始岩浆温度(880~901℃).所有A型花岗质岩石均具有较富集的Nd同位素组成, εNd(t)值变化于-13.9~-12.2之间.斑状石英正长岩是下地壳中-基性麻粒岩和片麻岩部分熔融产生的熔体与幔源玄武质岩浆混合, 后又发生单斜辉石分离结晶的产物; 碱长花岗岩源于上地壳长英质岩石部分熔融产生的熔体与幔源玄武质岩浆混合, 随后经历长石的分离结晶作用而成; 斑岩是受幔源岩浆底侵加热的上地壳长英质岩石的部分熔融产生的熔体, 并经历了长石的分离结晶作用而产生.该环状杂岩体的形成过程可以概括为: (1)火山爆炸性喷发形成大量的碱性火山熔岩和火山碎屑岩; (2)地下岩浆房空虚导致压力下降, 其顶板围岩失稳而沿火山口周围近直立的环状断裂垮塌, 形成塌陷的破火山口.与此同时, 下覆岩浆房的岩浆被动挤入环状断裂而形成斑状石英正长岩环状岩墙; (3)浅部地壳的长英质岩浆房过压, 促使其高温过碱质A型花岗质岩浆上升侵位形成了中心的斑状碱长花岗岩岩株, 这些岩浆的上涌导致上覆围岩产生倾角中-陡的、内倾的锥状裂隙, 为石英正长斑岩锥状岩席侵位提供了空间; (4)浅部岩浆房复活, 高温过碱质A型花岗质岩浆再度上升侵位形成被嵌套的晶洞碱长花岗岩岩株.同样, 这种岩浆的再度上侵导致上覆围岩产生了倾角较陡而内倾的锥状裂隙, 为花岗斑岩锥状岩席提供了侵位空间.后石湖山碱性环状杂岩体的形成是华北东部早白垩世与克拉通破坏相关的伸展构造体制下的产物, 这种构造体制可能与古太平洋板块的俯冲作用有关.Abstract: The Houshihushan complex is an alkaline ring complex associated with a collapsed caldera, consisting of a circular screen of alkaline volcanic rocks and post-collapse resurgent intrusions including a ring dyke of porphyritic quartz syenite, a central composite hypabyssal intrusion of nested stocks of drusy alkali-feldspar granite and porphyritic alkali-feldspar granite, and cone sheets of quartz syenite porphyry and granite porphyry. Zircon LA-ICPMS U-Pb analyses yields mean 206Pb/238U ages of 119±3Ma for porphyritic quartz syenite, 121±2Ma for quartz syenite and 121±2Ma for granite porphyry, respectively. Volcanic rocks of the Houshihushan Ring Complex (HRC) have similar ages to those of the intrusive rocks, confirming it as a volcanic-intrusive complex. Porphyritic quartz syenites have high contents of Na2O+K2O (10.0%-10.5%) and K2O (5.21%-5.42%) with positive Eu anomalies (Eu/Eu*=1.05-1.40). Alkali-feldspar granites and porphyries are characterized by enriched Na2O+K2O, FeOtot/MgO, Ga/Al, Zr, Nb and REE (except for Eu) and low abundance of Al2O3, CaO, MgO, Ba, Sr and Eu, indicative of A-type granitic rocks. The porphyries can be classified as aluminous A-type granites, and show high zircon saturation temperatures (880-901℃). All the A-type granites of the HRC posses negative εNd(t) values from -13.9 to -12.2. Porphyritic quartz syenite magmas were derived from partial melting of intermediate to mafic granulites and gneisses in the lower crust that mixed with enriched mantle-derived basaltic magma, with subsequent differentiation of clinopyroxene. Alkali-feldspar granite magmas were produced by mixing of mantle-derived basaltic magmas with upper crustal felsic melts, with fractionation of feldspars. The petrogenetic processes of porphyritic magmas involved partial melting of quartzfeldspathic rocks at shallow crust depths coupled with differentiation of feldspars. We suggest that development of the HRC involved the following four-stage sequence: (1) massive alkaline laves and pyroclastics erupted explosively; (2) the subsided caldera formed because of loss of magma from an underlying magma chamber which reduced magma pressure and facilitated collapse of the roof of the magma chamber along near-vertical ring faults. Magma intruded passively up the opening ring-faults to form the ring dyke of porphyritic quartz syenite during caldera collapse; (3) the high-level magma chamer became overpressured, and hot peralkline A-type granite magma was emplaced as the central stock of porphyritic alkali-feldspar granite. The overlying crust was fractured to generate cone fractures that provided space for the ascent of felsic melts to form cone sheets of quartz syenite porphyry; (4) the chamber resurged and a cogenetic pluton was emplaced as the nested stock of drusy alkali-feldspar granite. Build-up of magma overpressure within the central source chamber imparted upward force to fracture the host rock and form new conical fractures. These fractures were filled with magma to form cone sheets of granite porphyry. The Houshihushan alkaline ring complex formed over a brief time period in an extensional setting related to destruction of the eastern North China Craton during Early Cretaceous, possibly associated with subduction of paleo-Pacific plate.
-
Key words:
- ring complex /
- geology /
- zircon U-Pb geochronology /
- geochemistry /
- evolution /
- Yanshan orogenic belt
-
图 1 (a) 中国东部主要构造单元的地质简图.后石湖山环状杂岩体(HRC)位于燕山造山带最东端;(b)后石湖山环状杂岩体地质图(据河北省地质局第二区域地质调查队1∶20万山海关幅(1974)、河北省地矿局区域地质调查大队1∶5万山海关幅(1988);中国地质大学(北京)地质调查研究院1∶25万青龙县幅(2002)修改)
Fig. 1. (a) Simplified geological map showing major tectonic units in eastern China. The Houshihushan ring complex is located in the eastern part of the Yanshan orogenic belt; (b) Geological map of the Houshihushan ring complex (HRC)
图 2 后石湖山环状杂岩体的野外地质
a.火山岩(K1)与围岩秦皇岛花岗岩(γ1)的断层接触关系,K1为含球粒流纹岩,白色虚线示断层线位置,小陈庄;b.斑状石英正长岩(πξο53)产状陡立,呈岩墙状侵入于K1的粗面岩中,九门口;c.宽约10m的晶洞碱长花岗岩岩枝侵入于斑状碱长花岗岩之中,三道关停车场;d.侵入到斑状碱长花岗岩(左,浅色)之中的晶洞碱长花岗岩(右上角,暗色)岩枝边部发育有宽1 ~ 2m冷凝边(中,灰色),三道关停车场;e.石英正长斑岩(暗色)侵入于斑状石英正长岩(浅色)之中,岩墙产状20°∠60°,燕塞湖停车场;f.三条近平行的花岗斑岩岩墙群(暗色)侵入到中心的碱长花岗岩岩株,接触面较陡(62°),向N(杂岩体中心方向)倾斜,五佛公园
Fig. 2. Field geology of the Houshihushan ring complex
图 3 后石湖山环状杂岩体岩石的典型显微照片
a.流纹质晶屑熔结凝灰岩,塑性岩屑呈火焰状、枝杈状,遇石英(Q)晶屑呈弯曲嵌入现象,显示假流纹构造;b.斑状石英正长岩,具环边的正长石斑晶(Or)边缘呈熔蚀港湾状,内部出现不规则空隙,其中充填重结晶的基质;c.斑状碱长花岗岩,见正长石斑晶(Or)的熔蚀圆化边缘,含少量钠铁闪石(Arf);d.晶洞碱长花岗岩,视域中可见钾长石-石英交生颗粒(G)、条纹正长石(Pr)和深蓝色钠铁闪石(Arf);e.石英正长斑岩,正长石斑晶(Or,浅色),有熔蚀边缘,定向分布显示流动构造; f.花岗斑岩,石英(Q)、正长石(Or)斑晶熔蚀结构发育,有的Q斑晶周围与Or组成显微文象结构(G).a,c,d.单偏光; b,e,f.正交偏光
Fig. 3. Photomicrographs showing typical textures of rocks from the HRC
图 6 后石湖山岩石的地球化学分类
a.在全碱-硅(TAS)图(Na2O+K2O)(%)-SiO2(%)中岩石的命名(Middlemost, 1994),图中碱性与亚碱性系的分界线(虚线)据Miyashiro(1978).b.K2O(%)-SiO2(%)图,分界线据Peccerillo and Taylor(1976).c.A/NK-A/CNK图(Maniar and Piccoli, 1989),反映铝饱和程度.A=Al2O3,N=Na2O,K=K2O,C=CaO(摩尔数).数据来源:碱长花岗岩、碱流岩、石英正长岩和粗面岩据Yang et al.(2008);钠铁闪石花岗岩据刘红涛等(2002)
Fig. 6. Geochemical classification diagrams of rocks from the HRC
图 7 (a) FeOtot/(FeOtot+MgO)-SiO2(%);(b)Na2O+K2O-CaO(%)-SiO2(%)分类图解(据Frost et al., 2001)
图中样品代号同图 6;全世界486个典型A型花岗岩成分点圈定的范围用阴影区表示
Fig. 7. (a) and (b)-Fe* (FeOtot/(FeOtot+MgO)) and modified alkali-lime index (MALI=Na2O+K2O-CaO (%)) of rocks from the HRC plotted against % SiO2
图 8 后石湖山岩石的稀土元素球粒陨石标准化配分图和微量元素原始地幔标准化蛛网图
a, b.斑状石英正长岩;c, d.晶洞碱长花岗岩和斑状碱长花岗岩;e, f.石英正长斑岩和花岗斑岩.a,b中阴影区代表的石英正长岩和粗面岩,c~f中阴影区代表碱长花岗岩和碱流岩的成分.球粒陨石和原始地幔标准化值据Sun and McDonough(1989),样品代号同图 6,数据来源据Yang et al.(2008)
Fig. 8. Chondrite-normalized REE distribution patterns and primitive mantle-normalized spidergarams
图 10 (a) V-Cr;(b)Ba-Eu/Eu*;(c)Rb/Sr-Sr以及(d)Ba-Sr的变异图,表明了矿物的分离结晶趋势
图中样品代号同图 6.矿物缩写为:橄榄石(Ol)、斜方辉石(Opx)、单斜辉石(Cpx)、角闪石(Am)、黑云母(Bi)、斜长石(Pl)和钾长石(Kf)
Fig. 10. (a) V vs. Cr, (b) Ba vs. Eu/Eu*, (c) Rb/Sr-Sr and (d) Ba vs. Sr diagrams showing crystal fractionation trends of the rocks from the HRC
图 11 后石湖山环状杂岩体岩石的(87Sr/86Sr)i-εNd(t)投图,并与燕山造山带其他A型花岗岩对比
数据来源:后石湖山、响山及千层背碱长花岗岩和碱流岩据Yang et al.(2008);后石湖山正长岩和粗面岩据Yang et al.(2008);黑熊山碱长花岗岩据王焰和张旗(2001);邓扎子A型花岗岩据Niu et al.(2011);甲山A型花岗岩体据Yang et al.(2007);华北克拉通北缘赤峰-开源断裂以南的南区具有明显EMI型特征的玄武岩据周新华等(2001);主要来源于EMI型地幔的晚侏罗世高镁安山岩据Zhang et al.(2003).亏损地幔据Zindler et al.(1984);上地壳(UCC)、下地壳(LCC)据Jahn et al.(1999).εNd(t)值均由t=120Ma推算而得.除图中已标注样品代号外,其他的均同图 6
Fig. 11. εNd(t) vs.(87Sr/86Sr)i diagram for rocks from the HRC and other alkaline rocks including A-type granites from Yanshan orogenic belt
表 1 后石湖山斑状石英正长岩(YS-1)、石英正长斑岩(09YSH01-3)与花岗斑岩(09YSH47-2)样品的LA-ICPMS锆石U-Pb定年分析结果
Table 1. LA-ICPMS U-Pb data for zircons of porphyritic quartz syenite, quartz syenite porphyry and granite porphyry samples from the HRC
点号 全Pb(10-6) 238U(10-6) 232Th(10-6) 232Th/238U 同位素比值 同位素年龄(Ma) 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 斑状石英正长岩(YS-1) 01 4.2 207 156 0.76 0.0505 0.0042 0.119 0.0094 0.0175 0.0005 112 3 115 9 02 5.0 232 198 0.85 0.0484 0.0051 0.123 0.0123 0.0186 0.0005 119 3 118 11 03 15.0 579 891 1.54 0.0519 0.0027 0.139 0.0075 0.0193 0.0004 123 2 132 7 04 17.1 621 1334 2.15 0.0474 0.0046 0.119 0.0113 0.0181 0.0004 116 2 114 10 05 7.0 327 320 0.98 0.0495 0.0041 0.123 0.0107 0.0179 0.0004 114 3 118 10 06 11.7 509 534 1.05 0.0505 0.0033 0.130 0.0084 0.0187 0.0004 119 3 124 8 07 6.7 285 296 1.04 0.0499 0.0052 0.129 0.0137 0.0185 0.0004 118 3 123 12 08 22.2 749 1446 1.93 0.0485 0.0028 0.132 0.0074 0.0196 0.0003 125 2 126 7 09 90.8 2965 6689 2.26 0.0470 0.0011 0.124 0.0035 0.0190 0.0003 121 2 119 3 10 4.1 184 141 0.77 0.0496 0.0079 0.127 0.0198 0.0187 0.0005 119 3 121 18 11 14.6 557 856 1.54 0.0492 0.0026 0.121 0.0065 0.0180 0.0003 115 2 116 6 12 4.3 183 133 0.73 0.0503 0.0055 0.133 0.0142 0.0192 0.0007 123 5 127 13 石英正长斑岩(09YSH01-3) 01 42.7 338 550 1.63 0.0573 0.0014 0.639 0.0150 0.0806 0.0006 500 4 502 9 02 13.5 489 650 1.33 0.0491 0.0051 0.124 0.0115 0.0187 0.0005 120 3 118 10 03 6.9 274 217 0.79 0.0481 0.0051 0.124 0.0122 0.0187 0.0005 120 3 119 11 04 3.5 153 67 0.44 0.0491 0.0062 0.128 0.0163 0.0191 0.0005 122 3 122 15 05 3.4 147 60 0.41 0.0498 0.0089 0.133 0.0224 0.0196 0.0007 125 4 127 20 06 81.7 444 71 0.16 0.0723 0.0013 1.658 0.0320 0.1658 0.0013 989 7 993 12 07 4.3 181 87 0.48 0.0484 0.0081 0.136 0.0234 0.0201 0.0007 128 4 130 21 08 3.1 129 111 0.87 0.0502 0.0116 0.120 0.0275 0.0179 0.0009 114 6 115 25 09 3.3 152 74 0.49 0.0484 0.0061 0.122 0.0160 0.0182 0.0007 116 4 117 15 10 4.3 192 100 0.52 0.0544 0.0095 0.132 0.0198 0.0189 0.0008 121 5 125 18 11 5.8 231 211 0.91 0.0493 0.0042 0.129 0.0111 0.0190 0.0004 121 2 123 10 12 6.3 251 246 0.98 0.0489 0.0033 0.126 0.0084 0.0188 0.0003 120 2 120 8 花岗斑岩(09YSH47-2) 01 6.6 267 178 0.67 0.0520 0.0072 0.139 0.0191 0.0195 0.0005 124 3 132 17 02 5.3 225 127 0.56 0.0506 0.0040 0.134 0.0096 0.0195 0.0004 124 2 128 9 03 4.4 191 95 0.50 0.0512 0.0061 0.129 0.0133 0.0193 0.0005 123 3 123 12 04 5.5 226 127 0.56 0.0480 0.0043 0.129 0.0113 0.0195 0.0003 125 2 123 10 05 5.4 232 129 0.56 0.0500 0.0034 0.130 0.0086 0.0190 0.0003 121 2 124 8 06 4.5 190 98 0.51 0.0494 0.0044 0.131 0.0107 0.0195 0.0004 124 2 125 10 07 5.2 216 115 0.53 0.0524 0.0050 0.136 0.0120 0.0195 0.0004 124 3 130 11 08 5.5 236 142 0.60 0.0492 0.0032 0.127 0.0079 0.0189 0.0003 121 2 122 7 09 5.2 220 125 0.57 0.0479 0.0037 0.127 0.0099 0.0193 0.0003 123 2 121 9 10 4.6 197 111 0.56 0.0499 0.0055 0.127 0.0129 0.0191 0.0005 122 3 121 12 11 6.5 281 183 0.65 0.0489 0.0023 0.123 0.0056 0.0184 0.0002 118 1 118 5 12 5.0 208 117 0.56 0.0474 0.0045 0.130 0.0125 0.0195 0.0004 125 3 124 11 13 5.7 249 138 0.56 0.0473 0.0045 0.123 0.0125 0.0185 0.0003 118 2 118 11 14 4.6 204 108 0.53 0.0481 0.0043 0.124 0.0115 0.0188 0.0003 120 2 119 10 15 5.7 254 161 0.64 0.0486 0.0038 0.124 0.0097 0.0183 0.0003 117 2 118 9 16 5.1 229 121 0.53 0.0494 0.0030 0.121 0.0072 0.0180 0.0003 115 2 116 7 表 2 后石湖山代表性样品的元素地球化学成分
Table 2. Element compositions of representative samples from the HRC
样号 09YSH01-3 10YSH45-1 10YSH67-2 10YSH40-3 10YSH67-5 09YSH47-2 09YSH35-2 09YSH11-1 主量元素(%) SiO2 75.37 73.49 75.64 74.52 75.41 75.85 76.09 76.59 TiO2 0.17 0.18 0.12 0.12 0.14 0.14 0.18 0.14 Al2O3 12.47 13.72 12.14 12.3 12.53 11.58 12.52 12.29 Fe2O3 1.36 2.02 1.86 1.91 1.96 2.18 - - TFe2O3 2.19 2.44 2.49 2.33 2.80 2.55 2.35 2.1 FeO 0.75 0.38 0.57 0.38 0.76 0.33 - - MnO 0.11 0.01 0.03 0.06 0.07 0.07 0.02 0.08 MgO 0.11 0.11 0.08 0.11 0.12 0.1 0.09 0.08 CaO 0.38 0.04 0.15 0.14 0.29 0.35 0.12 0.16 Na2O 4.58 5.44 4.5 3.53 4.49 2.81 4.03 4.26 K2O 4.16 3.75 3.85 5.57 4.31 6.12 4.65 4.62 P2O5 0.01 0.024 0.012 0.03 0.019 0.01 0.02 0.01 Lost 0.34 0.43 0.3 0.57 0.4 0.24 0.32 0.31 Total 99.81 99.59 99.25 99.24 100.5 99.78 100.39 100.64 A/CNK 0.98 1.05 1.03 1.02 1 0.97 1.05 1.00 微量元素(10-6) V 1.95 3.09 3.48 1.19 1.66 2.44 1.84 0.69 Cr 1.84 1.13 0.21 0.73 1.15 2.69 0.35 0.23 Co 0.44 48.4 24.3 57.1 73.9 0.63 57.5 68.2 Ni 1.05 1.44 0.49 1.36 1.6 1.48 1.03 1.08 Zn 68.6 23.5 25.6 64.1 97.5 107 59.7 90.6 Ga 24.7 22.9 23.4 22.4 23.9 24.5 24.7 26.0 Rb 139 97 148 180 170 252 139 188 Sr 11.1 52.6 29.3 8.45 14.5 15.1 15.4 5.50 Y 62.9 41.7 64.9 57.8 61.4 85 58.9 66.1 Zr 510 429 464 451 426 537 527 544 Nb 71 42.1 57.4 57.6 61.5 76.1 53.1 57.6 Cs 1.62 0.58 0.59 0.97 0.85 2.82 0.62 0.98 Ba 66.4 105 42.1 59.9 34.1 24.9 90.7 8.71 La 109 66.3 80.5 68.6 82.4 83.3 77.4 8.67 Ce 189 113 152 137 148 157 147 87.4 Pr 21.9 14.2 17.9 15.2 16.9 17.8 17.2 180 Nd 78.1 49.2 63.6 54.1 59.2 63.3 59.7 19.8 Sm 13.7 8.72 11.9 10.3 11.3 12.8 11.6 68.2 Eu 0.074 0.22 0.045 0.098 0.11 0.094 0.12 13.0 Gd 10.9 7.12 10.7 9.08 9.51 11.9 9.04 0.060 Tb 1.74 1.2 1.76 1.59 1.61 2.12 1.57 11.1 Dy 10.1 7.23 10.6 9.71 9.5 13.1 9.86 1.81 Ho 1.98 1.41 2.06 1.93 1.91 2.7 2.06 10.8 Er 6.08 4.46 6.26 5.78 5.67 8.06 6.07 2.20 Tm 0.93 0.67 0.95 0.88 0.88 1.28 0.93 6.40 Yb 6.12 4.36 6.08 5.85 6.01 8.44 5.99 0.98 Lu 0.9 0.67 0.91 0.83 0.84 1.17 0.96 6.39 Hf 14.4 11.8 13.7 13.6 12.8 17.2 14.2 1.01 Ta 3.75 2.84 3.48 3.59 3.51 4.69 3.37 15.2 Pb 199 11.3 11.1 9.44 48.3 327 10.5 3.71 Th 17.6 14.2 16.7 16.5 16.8 25.7 16.0 17.7 U 4.65 3.71 4.82 3.9 4.27 6.48 3.59 4.27 (La/Yb)N 12.76 10.92 9.51 8.41 9.83 7.08 9.27 9.81 Eu/Eu* 0.02 0.08 0.01 0.03 0.03 0.02 0.03 0.01 样号 09YSH39-1 09YSH52-1 09YSH12-1 09YSH38-1 09YSH44-1 YS-1 09YSH24-1 10YSH40-1 主量元素(%) SiO2 76.68 76.61 76.35 76.81 75.18 65.29 63.47 62.83 TiO2 0.14 0.14 0.15 0.15 0.16 0.73 0.92 0.87 Al2O3 12.39 12.3 12.03 11.81 12.29 16.05 16.52 16.41 Fe2O3 - - - - 1.04 - - - TFe2O3 1.78 1.87 2.23 2.00 2.21 4.18 4.71 5.73 FeO - - - - 1.05 - - - MnO 0.07 0.06 0.07 0.05 0.05 0.09 0.07 0.17 MgO 0.06 0.09 0.08 0.07 0.08 0.88 1.07 0.92 CaO 0.28 0.27 0.28 0.25 0.37 1.75 2.01 2.04 Na2O 4.07 4.09 4.42 4.26 4.53 4.62 5.29 5.11 K2O 4.59 4.7 4.44 4.47 4.75 5.42 5.21 5.31 P2O5 0.01 0.01 0.01 0.01 0.01 0.21 0.3 0.25 Lost 0.4 0.31 0.35 0.47 0.28 1.17 0.39 0.5 Total 100.47 100.45 100.41 100.35 99.79 100.39 99.96 100.14 A/CNK 1.02 1.00 0.96 0.96 0.93 0.96 0.92 0.92 微量元素(10-6) V 1.22 0.96 0.52 1.44 1.48 25.8 31.7 25.7 Cr 0.35 0.35 0.19 0.44 1.87 1.43 1.26 1.08 Co 68.3 62.4 60.7 146 0.38 25.3 30.1 25.4 Ni 1.14 0.96 0.75 1.86 0.92 1.31 1.18 1.34 Zn 64.2 79.5 96.5 102 84.3 67.7 40.3 90.0 Ga 25.3 24.8 25.7 25.0 26.1 20.9 20.8 22.8 Rb 181 199 188 203 184 101 96.9 66.9 Sr 10.1 8.07 3.63 7.34 5.75 202 212 191 Y 65.2 55.7 67.8 53.6 79.4 28.8 28.3 28.1 Zr 484 371 561 423 723 240 224 215 Nb 60.4 56.2 63.0 43.0 80.1 20.9 17.6 18.8 Cs 0.77 0.90 1.57 1.84 1.38 1.34 0.64 0.96 Ba 27.8 22.7 3.45 2.73 30.1 1483 1699 1021 La 27.9 22.8 83.9 77.1 92.1 1482 1716 1023 Ce 68.9 76.8 175 153 189 46.1 43.6 39.6 Pr 144 157 19.7 17.5 18.8 93.8 88.8 83.0 Nd 16.0 17.3 69.7 60.8 64.8 10.6 10.4 9.93 Sm 55.6 59.7 13.7 11.5 11.7 40.1 41.6 38.9 Eu 11.3 11.7 0.049 0.034 0.098 7.42 7.73 7.57 Gd 0.10 0.098 11.9 9.14 10 2.40 3.31 2.72 Tb 9.63 9.86 1.91 1.48 1.82 6.25 6.39 6.27 Dy 1.69 1.62 11.8 8.54 11.8 0.91 0.92 0.92 Ho 10.4 9.51 2.49 1.70 2.52 5.14 5.23 5.17 Er 2.13 1.90 7.23 5.01 7.94 0.99 0.99 0.98 Tm 6.24 5.35 1.14 0.79 1.24 2.77 2.62 2.65 Yb 0.97 0.79 7.46 5.25 8.56 0.40 0.38 0.38 Lu 6.19 5.23 1.19 0.84 1.24 2.53 2.39 2.34 Hf 0.94 0.78 14.8 11.6 20.9 0.38 0.36 0.38 Ta 14.4 11.3 3.84 2.08 4.42 5.88 5.24 5.00 Pb 3.78 3.67 36.3 20.0 75.3 1.33 1.08 1.10 Th 17.3 15.9 20.2 14.7 23.3 7.71 5.55 4.18 U 4.66 3.78 4.52 3.62 5.59 2.33 1.34 1.28 (La/Yb)N 7.99 10.52 8.07 7.72 10.53 13.05 13.11 12.14 Eu/Eu* 0.03 0.03 0.01 0.03 0.01 1.05 1.40 1.17 注:Eu/Eu*=2EuN/(SmN+GdN);(La/Yb)N=球粒陨石标准化的La/Yb值. 表 3 后石湖山的石英正长斑岩、花岗斑岩及斑状碱长花岗岩Sr-Nd同位素成分
Table 3. Sr-Nd isotopic compositions of quartz syenite porphyry, granite porphyry and porphyritic alkaline granite from the HRC
样号 09YSH01-3 10YSH45-1 10YSH67-2 10YSH40-3 10YSH67-5 09YSH47-2 09YSH44-1 岩石类型 石英正长斑岩 石英正长斑岩 石英正长斑岩 花岗斑岩 花岗斑岩 花岗斑岩 斑状碱长花岗岩 Rb(10-6) 139 97 148 180 170 252 184 Sr(10-6) 11.1 52.6 29.3 8.45 14.5 15.1 5.75 87Rb/86Sr 36.435913 5.341855 14.69661 62.117136 34.164308 48.624295 93.751904 87Sr/86Sr 0.762033 0.724184 0.758597 0.796899 0.794169 0.773361 0.839609 2σ(10-6) 4 6 8 10 19 4 10 Sm(10-6) 13.7 8.72 11.9 10.3 11.3 12.8 11.7 Nd(10-6) 78.1 49.2 63.6 54.1 59.2 63.3 64.8 147Sm/144Nd 0.1064326 0.1072965 0.113206 0.1151581 0.1154472 0.1223666 0.1092797 143Nd/144Nd 0.511901 0.511856 0.511915 0.511948 0.511926 0.511946 0.511928 2σ 6 5 4 2 3 5 5 (87Sr/86Sr)i 0.6999 0.7151 0.7335 0.6910 0.7359 0.6904 0.6797 εNd(t) -13 -13.9 -12.8 -12.2 -12.7 -12.4 -12.5 TDM2(Ga) 1972 2044 1958 1909 1944 1921 1933 f(Sm/Nd) -0.46 -0.45 -0.42 -0.41 -0.41 -0.38 -0.44 注:\[\begin{array}{l} {\varepsilon _{{\rm{Nd}}}} = \left[ {{{\left({^{143}{\rm{Nd}}{/^{144}}{\rm{Nd}}} \right)}_{\rm{s}}}\left(t \right)/{{\left({^{143}{\rm{Nd}}{/^{144}}{\rm{Nd}}} \right)}_{{\rm{CHUR}}}}\left(t \right) - 1} \right] \times 10\; 000;{\left({^{143}{\rm{Nd}}{/^{144}}{\rm{Nd}}} \right)_{{\rm{CHUR}}}}\left(t \right) = {\left({^{143}{\rm{Nd}}{/^{144}}{\rm{Nd}}} \right)_{{\rm{CHUR}}}} - {\left({^{147}{\rm{Sm}}{/^{144}}{\rm{Nd}}} \right)_{{\rm{CHUR}}}}\\ \left({{{\rm{e}}^{\mathit{\lambda t}}} - 1} \right); {T_{{\rm{DM2}}}} = \frac{1}{\lambda }\ln \left\{ {1 + \frac{{{{\left({^{143}{\rm{Nd}}{/^{144}}{\rm{Nd}}} \right)}_{\rm{s}}} - {{\left({^{143}{\rm{Nd}}{/^{144}}{\rm{Nd}}} \right)}_{{\rm{DM}}}} - \left[ {{{\left({^{147}{\rm{Sm}}{/^{144}}{\rm{Nd}}} \right)}_{\rm{s}}} - {{\left({^{147}{\rm{Sm}}{/^{144}}{\rm{Nd}}} \right)}_{\rm{c}}}} \right]\left({{{\rm{e}}^{\mathit{\lambda t}}} - 1} \right)}}{{{{\left({^{147}{\rm{Sm}}{/^{144}}{\rm{Nd}}} \right)}_{\rm{c}}} - {{\left({^{147}{\rm{Sm}}{/^{144}}{\rm{Nd}}} \right)}_{{\rm{DM}}}}}}} \right\} \end{array}\],式中:下标s、c和DM分别代表现今测定值、大陆壳平均值和亏损地幔值;(143Nd/144Nd)CHUR=0.512638,(147Sm/144Nd)CHUR=0.1967,(143Nd/144Nd)DM=0.51315,(147Sm/144Nd)DM=0.2137,(147Sm/144Nd)c=0.118;λ =6.54×10-12a-1;t代表样品结晶年龄,均取120Ma;所有样品的(87Sr/86Sr)i和εNd值均由t=120Ma推算而得. 表 4 锥状岩席与环状岩墙的对比
Table 4. Comparison between cone sheets and ring dyke
侵入体类型 几何形态 成因 成分 倾角 走向 宽度 数目 锥状岩席 内倾、缓-陡的 主要为环形或椭圆形 可变,多为厘米-米级,少见超过几十米的 数目多,往往组成席状岩墙群 过压岩浆房引起、主动侵入的岩墙侵入体 可为基性、中性或长英质的各种类型,通常表现淬冷结构 环状岩墙 外倾、垂直-陡的 环形、椭圆形、多边形或拱形 可变,为米-公里级 往往为单个侵入体 也可能被动地侵入环状断层 一般为长英质的,不表现典型的淬冷结构 -
An, M.J., Feng, M., Zhao, Y., 2009. Destruction of Lithosphere within the North China Craton Inferred from Surface Wave Tomography. Geochemistry Geophysics Geosystems, 10(8): 1-18. doi: 10.1029/2009GC002562 Beyth, M., Stern, R.J., Altherr, R., et al., 1994. The Late Precambrian Timna Igneous Complex Southern Israel, Evidence for Comagmatic-Type Sanukitoid Monzodiorite and Alkali Granite Magma. Lithos, 31(3-4): 103-124. doi: 10.1016/0024-4937(94)90003-5 Bogaerts, M., Scaillet, B., Auwera, J.V., 2006. Phase Equilibria of the Lyngdal Granodiorite (Norway): Implications for the Origin of Metaluminous Ferroan Granitoids. Journal of Petrology, 47(12): 2405 -2431. doi: 10.1093/petrology/egl049 Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. doi: 10.1016/j.lithos.2006.12.007 Charles, N., Gumiaux, C., Augier, R., et al., 2011. Metamorphic Core Complexes vs. Synkinematic Plutons in Continental Extension Setting: Insights from Key Structures (Shandong Province, Eastern China). Journal of Asian Earth Sciences, 40(1): 261-278. doi: 10.1016/j.jseaes.2010.07.006 Chen, B., Tian, W., Jahn, B.M., et al., 2008. Zircon SHRIMP U-Pb Ages and In-Situ Hf Isotopic Analysis for the Mesozoic Intrusions in South Taihang, North China Craton: Evidence for Hybridization between Mantle-Derived Magmas and Crustal Components. Lithos, 102(1-2): 118-137. doi: 10.1016/j.lithos.2007.06.012 Clemens, J.D., Holloway, J.R., White, A.J.R., 1986. Origin of an A-Type Granite: Experimental Constraints. American Mineralogist, 71(3-4): 317-324. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=71/3-4/317 Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular References to Southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189-200. doi: 10.1007/BF00374895 Cope, T.D., Graham, S.A., 2007. Upper Crustal Response to Mesozoic Tectonism in Western Liaoning, North China, and Implications for Lithospheric Delamination. In: Zhai, M.G., Windley, B.F., Kusky, T.M., et al., eds., Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. Geological Society of London, Special Publication, 280: 201-222. doi: 10.1144/SP280.10 Darby, B.J., Davis, G.A., Zhang, X.H., et al., 2004. The Newly Discovered Waziyu Metamorphic Core Complex, Yiwulü Shan, Western Liaoning Province, Northwest China. Earth Science Frontiers (China University of Geosciences, Beijing), 11(3): 145-155. Davidson, J., Turner, S., 2007. Amphibole "Sponge" in Arc Crust? Geology, 35(9): 787-790. doi: 10.1130/G23637A.1 Davis, G.A., Zheng, Y., Wang, C., et al., 2001. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China. Geological Society of America Memoir, 194: 171-197. doi: 10.1130/0-8137-1194-0.171 Deng, J.F., Su, S.G., Zhao, G.C., et al., 2004. The Sequence of Magmatic-Tectonic Events and Orogenic Processes of the Yanshan Belt, North China. Acta Geologica Sinica, 78(1): 260-266. doi: 10.1111/j.1755-6724.2004.tb00698.x Du, L.L., Yang, C.H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2137Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2012.11.040 Durrance, E.M., 1967. Photoelastic Stress Studies and Their Application to a Mechanical Analysis of the Tertiary Ring-Complex of Ardnamurchan, Argyllshire. Proceedings of the Geological Association, 78(2): 289-318. doi: 10.1016/S0016-7878(67)80012-9 Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033 Gao, S., Luo, T.C., Zhang, B.R., et al., 1998. Chemical Compositions of the Continental Crust Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(1): 1959-1975. doi: 10.1016/S0016-7037(98)00121-5 Goss, S.C., Wilde, S.A., Wu, F.Y., et al., 2010. The Age, Isotopic Signature and Significance of the Youngest Mesozoic Granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309-326. doi: 10.1016/j.lithos.2010.08.019 Jahn, B.M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society of London, Special Publications, 226: 73-100. doi: 10.1144/GSL.SP.2004.226.01.05 Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3-4): 521-539. doi. org/10.1016/j. lithos. 2009.06.015 doi: 10.1016/j.lithos.2009.06.015 Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafıc-Ultramafıc Intrusions of the Northern Dabie Complex. Chemical Geology, 157(1-2): 119-146. doi. org/10.1016/S0009-2541(98)00197-1 doi: 10.1016/S0009-2541(98)00197-1 Jiang, N., Zhang, S.Q., Zhou, W.G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. doi10.1007/s00410-008-0373-2 doi: 10.1007/s00410-008-0373-2 Johnson, S.E., Paterson, S.R., Tate, M.C., 1999. Structure and Emplacement History of a Multiple-Center, Cone-Sheet-Bearing Ring Complex: The Zarza Intrusive Complex, Baja California, Mexico. Geological Society of America Bulletin, 111(4): 607-619. doi: 10.1130/0016-7606(1999) Johnson, S.E., Schmidt, K.L., Tate, M.C., 2002. Ring Complexes in the Peninsular Ranges Batholith, Mexico and the USA; Magma Plumbing Systems in the Middle and Upper Crust. Lithos, 61(3-4): 187-208. doi: 10.1016/S0024-4937(02)00079-8 Kerr, A., Fryer, B.J., 1993. Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. doi: 10.1016/0009-2541(93)90141-5 King, P.L., White, A.J.R., Chappell, B.W. et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. doi: 10.1093/petroj/38.3.371 Lei, R.X., Wu, C.Z., Chi, G.X., et al., 2013. The Neoproterozoic Hongliujing A-Type Granite in Central Tianshan (NW China): LA-ICP-MS Zircon U-Pb Geochronology, Geochemistry, N-Hf Isotope and Tectonic Significance. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2013.03.025 Li, S.Z., Liu, J.Z., Zhao, G.C., et al., 2004. Key Geochronology of Mesozoic Deformation in the Eastern Block of the North China Craton and Its Constrains on Regional Tectonics: A Case of Jiaodong and Liaodong Peninsula. Acta Petrologica Sinica, 20(3): 633-646 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252033273.html Li, W.P., 2013. Magma Evolution of the Late Jurassic Volcanic Rocks and Its Genesis of the Lanqi Formation, Beipiao Area, Western Liaoning Province. Earth Science—Journal of China University of Geosciences, 37(1): 47-56 (in Chinese with English abstract). http://www.researchgate.net/publication/287877073_Magma_evolution_of_the_Late_Jurassic_volcanic_rocks_and_its_genesis_of_the_Lanqi_Formation_Beipiao_area_western_Liaoning_Province Ling, W.L., Duan, R.C., Xie, X.J., et al., 2009. Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton. Lithos, 113(3-4): 640-658. doi: 10.1016/j.lithos.2009.07.001 Lipman, P.W., 1984. The Roots of Ash-Flow Calderas in Western North America; Windows into the Tops of Granitic Batholiths. J. Geophys. Res. , 89: 8801-8841. doi: 10.1029/JB089iB10p08801 Lipman, P.W., 1997. Subsidence of Ash-Flow Calderas: Relation to Caldera Size and Magma-Chamber Geometry. Bulletin of Volcanology, 59(3): 198-218. doi10.1007/s004450050186 doi: 10.1007/s004450050186 Lipman, P.W., 2000. Calderas. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., et al., eds., Encyclopedia of Volcanoes. Academic Press, San Diego, CA, 1417. Litvinovsky, B.A., Steel, I.M., Wickham, S.M., 2000. Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41(5): 717-737. doi: 10.1093/petrology/41.5.717 Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992. Remnants of ≥ 3800Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339-342. doi: 10.1130/0091-7613(1992) Liu, H.T., Sun, S.H., Zhai, M.G., 2002. The Mesozoic High-Sr Granitoids in the Northern Marginal Region of North China Craton: Geochemistry and Source Region. Acta Petrologica Sinica, 18(4): 257-274 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200203000.htm Liu, J., Davis, G.A., Lin, Z.Y., et al., 2005. The Liaonan Metamorphic Core Complex, Southeastern Liaoning Province, North China: A Likely Contributor to Cretaceous Rotation of Eastern Liaoning, Korea and Contiguous Areas. Tectonophysics, 407(1-2): 65-80. doi: 10.1016/j.tecto.2005.07.001 Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 Liu, Y.S., Gao, S., Jin, S.Y., et al., 2001. Geochemistry of Lower Crustal Xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for Petrogenesis and Lower Crustal Composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604. doi: 10.1016/S0016-7037(01)00609-3 Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016 Loiselle, M.C., Wones, D., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Abstracts with Programs, 11(7): 468. http://ci.nii.ac.jp/naid/10019593683 Ludwig, K.R., 2003. User's Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, USA. Ma, Q., Zheng, J., Griffin, W.L., et al., 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust. Lithos, 149(15): 159-173. doi: 10.1016/j.lithos.2012.04.017 Magee, C., 2011. Emplacement of Sub-Volcanic Cone Sheet Intrusions. PhD Thesis. The University of Birmingham, England. Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America, 101(5): 635-643. doi: 10.1130/0016-7606(1989) Meng, Q.R., 2003. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract? Tectonophysics, 369(3-4): 155-174. doi: 10.1016/S0040-1951(03)00195-1 Meng, Q.R., Zhang, G.W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3-4): 183-196. doi: 10.1016/S0040-1951(00)00106-2 Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth Science Review, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9 Miyashiro, A., 1978. Nature of Alkalic Volcanic Rock Series. Contributions to Mineralogy and Petrology, 66(1): 91-104. doi: 10.1007/BF00376089 Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. doi: 10.1093/petrology/44.5.815 Namur, O., Charlier, B., Toplis, M.J., et al., 2011. Differentiation of Tholeiitic Basalt to A-Type Granite in the Sept Iles Layered Intrusion, Canada. Journal of Petrology, 52(3): 487-539. doi: 10.1093/petrology/egq088 Niu, X.L., Chen, B., Ma, X., 2011. Petrogenesis of the Dengzhazi A-Type Pluton from the Taihang-Yanshan Mesozoic Orogenic Belts, North China Craton. Journal of Asian Earth Sciences, 41(2): 133-146. doi: 10.1016/j.jseaes.2011.01.008 O'Driscoll, B., Troll, V.R., Reavy, R.J., et al., 2006. The Great Eucrite Intrusion of Ardnamurchan, Scotland: Reevaluating the Ring-Dike Concept. Geology, 34(3): 189-192. doi: 10.1130/G22294.1 Patiño Douce, A.E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. doi: 10.1130/0091-7613(1997) Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks of the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745 Phillips, W.J., 1974. The Dynamic Emplacement of Cone Sheets. Tectonophysics, 24(1-2): 69-84. doi: 10.1016/0040-1951(74)90130-9 Ren, J.Y., Tamaki, K., Li, S.T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2 Shao, J.A., Li, X.H., Zhang, L.Q., et al., 2001. Geochemical Condition to Genetic Mechanism of the Mesozoic Bimodal Dike Swarms in Nankou-Guyaju. Geochimica, 30(6): 517-524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200106002.htm Skjerlie, K.P., Johnston, A.D., 1992. Vapor-Absent Melting at 10 Kbar of a Biotite- and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263-266. doi:10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2 Skjerlie, K.P., Johnston, A.D., 1993. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. Journal of Petrology, 34(4): 785-815. doi: 10.1093/petrology/34.4.785 Song, B., Nutman, A.P., Liu, D.Y., et al., 1996.3800 to 2500Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Res. , 78(1-3): 79-94. doi:10.1016/0301- 9268(95)00070-4 Su, S.G., Niu, Y.L., Deng, J.F., et al., 2007. Petrology and Geochronology of Xuejiashiliang Igneous Complex and Their Genetic Link to the Lithospheric Thinning during the Yanshanian Orogenesis in Eastern China. Lithos, 96(1-2): 90-107. doi: 10.1016/j.lithos.2006.09.020 Sun, J.F., Yang, J.H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science—Journal of China University of Geosciences, 34(1): 137-147 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.013 Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Geological Society London Special Publication, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Tibaldi, A., Pasquarè, A.F., Rust, D., 2011. New Insights into the Cone Sheet Structure of the Cuillin Complex, Isle of Skye, Scotland. Journal of the Geological Society, 168(3): 689-704. doi: 10.1144/0016-76492009-175 Vallinayagam, G., Kochhar, N., 2011. Petrological Evolution and Emplacement of Siwana and Jalor Ring Complexes of Malani Igneous Suite, Northwestern Peninsular India. Topics in Igneous Petrology, 437-448. doi: 10.1007/978-90-481-9600-5_17 Walter, T.R., 2008. Facilitating Dike Intrusion into Ring-Faults. Developments in Volcanology, 10: 351-374. doi: 10.1016/S1871-644X(07)00009-5 Wang, Q., Wyman, D.A., Li, Z.X., et al., 2010. Petrology, Geochronology and Geochemistry of ca. 780Ma A-Type Granites in South China: Petrogenesis and Implications for Crustal Groh during the Breakup of the Supercontinent Rodinia. Precambrian Research, 178(1-4): 185-208. doi: 10.1016/j.precamres.2010.02.004 Wang, Y., Zhang, Q. 2001. A Granitoids Complex from Badaling Area, North China: Composition, Geochemical Characteristics and Its Implications. Acta Petrologica Sinica, 17(4): 533-540 (in Chinese with English abstract). http://www.researchgate.net/publication/282372319_A_granitoid_complex_from_Badaling_area_North_China_Composition_geochemical_characteristics_and_its_implications Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X Wei, C.S., Zhao, Z.F., Spicuzza, M.J., 2008. Zircon Oxygen Isotopic Constraint on the Sources of Late Mesozoic A-Type Granites in Eastern China. Chemical Geology, 250(1-4): 1-15. doi: 10.1016/j.chemgeo.2008.01.004 Wei, H.H., Meng, Q.R., Wu, G.L., et al., 2011. Multiple Controls on Rift Basin Sedimentation in Volcanic Settings: Insights from the Anatomy of a Small Early Cretaceous Basin in the Yanshan Belt, Northern North China. Geological Society of America Bulletin, 124(3-4): 380-399. doi: 10.1130/B30495.1 Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202 Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019 Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9 Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1360/04wd0130 Xiao, W.J., Huang, B., Han, C., et al., 2010. A Review of the Western Part of the Altaids: A key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. doi: 10.1016/j.gr.2010.01.007 Xu, B.L., Yan, G.H., Xu, Z., et al., 1999. Geochemistry and Genetic Implications of Three Series of Yanshanian Granite in Northern Hebei Province. Acta Petrologica Sinica, 15(2): 208-216 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB902.006.htm Xu, Y.G., 2007. Diachronous Lithospheric Thinning of the North China Craton and Formation of the Daxin'anling-Taihangshan Gravity Lineament. Lithos, 96(1-2): 281-298. doi: 10.1016/j.lithos.2006.09.013 Yang, J.H., Wu, F.W., Wilde, S.A., 2003. A Review of Geodynamic Setting of Large-Scale Late Mesozoic Gold Mineralization in the North China Craton: An Association with Lithospheric Thinning. Ore Geology Reviews, 23(3-4): 125-152. doi: 10.1016/S0169-1368(03)00033-7 Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. doi: 10.1016/j.lithos.2005.10.002 Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2007. Rapid Exhumation and Cooling of the Liaonan Metamorphic Core Complex: Inferences from 40Ar/39Ar Thermochronology and Implications for Late Mesozoic Extension in the Eastern North China Craton. Geological Society of America Bulletin, 119(11-12): 1405-1414. doi: 10.1130/B26085.1 Yang, J.H., Wu, F.Y., Wilde, S.A., et al., 2008. Petrogenesis of an Alkali Syenite-Granite-Rhyolite Suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton: Geochronological, Geochemical and Nd-Sr-Hf Isotopic Evidence for Lithospheric Thinning. Journal of Petrology, 49(2): 315-351. doi: 10.1093/petrology/egm083 Yang, S.Y., Jiang, S.Y., Zhao, K.D., et al., 2012. Geochronology, Geochemistry and Tectonic Significance of Two Early Cretaceous A-Type Granites in the Gan-Hang Belt, Southeast China. Lithos, 150: 155-170. doi: 10.1016/j.lithos.2012.01.028 Zhang, H.F., Sun, M., Zhou, X.H., et al., 2003. Secular Evolution of the Lithosphere Beneath the Eastern North China Craton: Evidence from Mesozoic Basalts and High-Mg Andesites. Geochimica et Cosmochimica Acta, 67(22): 4373-4387. doi: 10.1016/S0016-7037(03)00377-6s Zhang, J.J., Zheng, Y.D., Shi, Q.Z., et al., 1997. The Xiaoqinling Detachment Fault and Metamorphic Core Complex of China: Structure, Kinematics, Strain and Evolution. Proc. 30th International Geological Congress, 14: 158-172. http://www.researchgate.net/publication/285490431_The_Xiaoqinling_detachment_fault_and_metamorphic_core_complex_of_China_structure_kinematics_strain_and_evolution Zhang, J.Y., Ma, C.Q., Wang, R.J., et al., 2013. Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution. Earth Science—Journal of China University of Geosciences, 38(1): 68-86 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.007 Zhang, S.H., Zhao, Y., Liu, X.C., et al., 2009. Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle. Lithos, 110(1-4): 229-246. doi: 10.1016/j.lithos.2009.01.008 Zhang, Y.Q., Li, J.L., Zhang, T., et al., 2008. Cretaceous to Paleocene Tectono-Sedimentary Evolution of the Jiaolai Basin and the Contiguous Areas of the Shandong Peninsula (North China) and Its Geodynamic Implications. Acta Geologica Sinica, 82(9): 1229-1257 (in Chinese with English abstract). http://www.cqvip.com/qk/95080x/2008009/28334393.html Zhao, D.P., Maruyama, S., Omori, S. 2007. Mantle Dynamics of Western Paciñc and East Asia: Insight from Seismic Tomography and Mineral Physics. Gondwana Research, 11(1-2): 120-131. doi: 10.1016/j.gr.2006.06.006 Zhao, D.P., Ohtani, E., 2009. Deep Slab Subduction and Dehydration and Their Geodynamic Consequences: Evidence from Seismology and Mineral Physics. Gondwana Research, 16(3): 401-413. doi: 10.1016/j.gr.2009.01.005 Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6 Zhou, X.H., Zhang, G.H., Yang, J.H., et al., 2001. Sr-Nd-Pb Isotope Mapping of Late Mesozoic Volcanic Rocks across Northern Margin of North China Craton and Implications to Geodynamic Processes. Geochimica, 30(1): 10-23 (in Chinese with English abstract). http://www.researchgate.net/publication/310751802_Sr-Nd-Pb_isotope_mapping_of_Late_Mesozoic_volcanic_rocks_across_northern_margin_of_North_China_Craton_and_implications_to_geodynamic_processes Zhu, G., Jiang, D.Z., Zhang, B.L., et al., 2012. Destruction of the Eastern North China Craton in a Backarc Setting: Evidence from Crustal Deformation Kinematics. Gondwana Research, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005 Zindler, A., Staudigel, H., Batiza, R., 1984. Isotope and Trace Element Geochemistry of Young Paciñc Seamounts: Implications for the Scale of Upper Mantle Heterogeneity. Earth and Planetary Science Letters, 70(2): 175-195. doi: 10.1016/0012-821X(84)90004-9 李三忠, 刘建忠, 赵国春, 等, 2004. 华北克拉通东部地块中生代变形的关键时限及其对构造的制约—以胶辽地区为例. 岩石学报, 20(3): 633-646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403027.htm 李武平, 2012. 辽西北票晚侏罗世蓝旗组火山岩的岩浆演化及其岩石成因. 地球科学——中国地质大学学报, 37(1): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201008.htm 刘红涛, 翟明国, 刘建明, 等, 2002. 华北克拉通北缘中生代花岗岩: 从碰撞后到非造山. 岩石学报, 18(4): 433-448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200204000.htm 邵济安, 李献华, 张履桥, 等, 2001. 南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约. 地球化学, 30(6): 517-524. doi: 10.3321/j.issn:0379-1726.2001.06.003 孙金凤, 杨进辉, 2009. 华北东部早白垩世A型花岗岩与克拉通破坏. 地球科学——中国地质大学学报, 34(1): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901015.htm 王焰, 张旗, 2001. 八达岭花岗杂岩的组成、地球化学特征及其意义. 岩石学报, 17(4): 533-540. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104003.htm 许保良, 阎国翰, 徐振邦, 等, 1999. 冀北燕山期三个系列花岗质岩石的地球化学特征及其成因学意义. 岩石学报, 15(2): 208-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.006.htm 张金阳, 马昌前, 王人镜, 等, 2013. 周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化. 地球科学——中国地质大学学报, 38(1): 68-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301011.htm 张岳桥, 李金良, 张田, 等, 2008. 胶莱盆地及其邻区白垩纪-古新世沉积构造演化历史及其区域动力学意义. 地质学报, 82(9): 1229-1257. doi: 10.3321/j.issn:0001-5717.2008.09.007 周新华, 张国辉, 杨进辉, 等, 2001. 华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义. 地球化学, 30(1): 10-23. doi: 10.3321/j.issn:0379-1726.2001.01.003