Petrogenesis of the Zhongzaohuo Ultramafic Pyroxenite Pluton, East Kunlun: Constraints from Petrology, Geochemistry and Genetic Mineralogy
-
摘要: 最近在青海东昆北中灶火地区发现超镁铁质岩的岩石学、地球化学以及成因矿物学等方面的研究成果.岩石主要由单斜辉石、斜方辉石和角闪石组成, 另有少量斜长石、石英、黑云母和铁质不透明矿物.角闪石和黑云母为后期退变质矿物.斜方辉石成因判别分析结果为岩浆成因, 故该超镁铁质岩为辉石岩而非麻粒岩.该辉石岩化学成分上表现为异常的高MgO、高CaO、低Al2O3特征, 微量元素表现为Rb、Th富集而Nb、Ti的亏损, 表明其来源于富集地幔.通过岩相学、稀土元素等特征与前人研究结果对比认为该辉石岩是俯冲洋壳部分熔融产生的富Si熔体与地幔橄榄岩发生交代反应产生辉石岩岩浆, 然后底侵到地壳中部冷却结晶形成的.野外地质特征显示辉石岩的侵位晚于发生糜棱岩化的围岩, 即晚于围岩的形成时代, 即早二叠世, 说明该辉石岩是在中二叠世古特提斯洋向北大规模俯冲及其所导致的弧后伸展的构造背景下形成的.Abstract: A ultramafic pyroxenite pluton has been discovered in Zhongzaohuo area in the East Kunlun orogen Recently. This paper reports the results of petrological, geochemical and genetic mineralogy research on the pyroxenite pluton. The rock is mainly composed of clinopyroxene, orthopyroxene and amphibole, and minor plagioclase, quartz, biotite and iron opaque minerals. Amphibole and biotite were formed during retrograde metamorphism. The discriminant analysis results suggest that the Opx are magmatogenic, thus the rock should be named pyroxenite rather than granulite. The rock has high MgO, CaO and low Al2O3 and enriched in Rb and Th and depleted in Nb and Ti, showing clear evidence for an enriched mantle source. Field occurrence of the pyroxenite pluton suggests that the pyroxenite pluton was formed after the mylonization of the surrounding rocks. Combined with the tectonic evolution of East Kunlun, we come to the conclusion that the subduction of an Paleo-Tethys(A'nyemaqen) oceanic slab at the Middle Permian led to fluid and Si-rich?melt metasomatism, inducing partial melting of an enriched lithospheric mantle(peridotites) to form the ultramafic pyroxenite magma. The pyroxenite magma underplated the overlying lower crust, captured the metamorphic zircons of the granulite and exchanged some trace elements, but didn't result in the lower crust partial melting to form any felsic magma. The pyroxenite magma emplaced alone eventually.
-
Key words:
- pyroxenite /
- geochemistry /
- mineralogy /
- metasomatic /
- the East Kunlun
-
图 1 研究区构造位置(a.据Roger et al., 2008修改)及辉石岩体周围地质图(b)
Fig. 1. Tectonic outline of the Tibetan Plateau showing the study area (a. after Roger et al., 2008) and simplified geological map of Zhongzaohuo area (b) in the North Block of the East Kunlun orogen, western China
图 2 东昆仑中早火地区辉石岩体及其围岩实测剖面(剖面位置见图 1)
1.第四系砂砾岩层;2.片麻岩;3.变砂岩;4.花岗闪长岩;5.二长花岗岩;6.辉石岩;7.石英岩;8.断层破碎带;9.糜棱岩化带
Fig. 2. Geological section showing the field occurrence of pyroxenite pluton and its contact relationships with adjacent geological bodies in the East Kunlun orogen, western China
图 4 MgO对Al2O3、CaO、TiO2、Ni、Sc、V变化图
空心圈引自(陈安国等, 1996)的数据,实心圈引自(陈斌等, 2008)的数据,绿色空心菱形框为本文数据
Fig. 4. Variation of MgO vs. Al2O3、CaO、TiO2、Ni、Sc and V
图 5 辉石岩稀土元素配分曲线图与不同成因辉石岩的典型REE配分形式.数据来源:Ⅰ和Ⅱ型辉石岩(Kornprobst, et al., 1990);交代成因辉石岩(Garrido and Bodinier, 1999; Liu et al., 2005);球粒陨石标准化值来源于Sun and McDonough (1989)
Fig. 5. REE patterns of pyroxenite samples (Bgnl-1, Bgnl-2, B3604) in the East Kunlun orogen, western China and Type Ⅰand Ⅱ pyroxenites and metasomatic pyroxenites. Sources: the Type Ⅰand Ⅱ pyroxenites (Kornprobst et al., 1990); Metasomatic pyroxenites (Garrido and Bodinier, 1999; Liu et al., 2005); Chondrite-normalized values are from Sun and McDonough (1989)
图 6 东昆仑中灶火辉石岩微量元素蛛网图(MORB标准化值来源于(Pearce and Cann, 1973))
Fig. 6. MORB-normalized trace elements spidergrams of pyroxenite in the East Kunlun orogen, western China
图 7 东昆仑中灶火辉石岩体中辉石矿物成分分类三角图(据Morimoto, 1988修改)
Di.透辉石;He.钙铁辉石;Au.普通辉石;Pi.易变辉石;Opx.斜方辉石
Fig. 7. Wo-En-Fs diagram showing the classification of pyroxene in the pyroxnite pluton in the East Kunlun orogen, western China
图 8 2种辉石100×MgO/(MgO+FeOT)分别对Al2O3、FeOT、MgO和CaO的变异图解(底图据(吴才来等, 2001)修改,略去了对比数据点)
①华北麻粒岩;②可可西里辉石岩包体;③中国东部和蒙古辉石岩包体;④中国东部二辉橄榄岩包体和澳大利亚、法国、美国加利福尼亚和夏威夷、蒙古的橄榄岩包体;⑤中国东部新生代玄武岩中辉石巨晶
Fig. 8. Variation of 100×MgO/(MgO+FeOT)vs. Al2O3, FeOT, MgO and CaO of Cpx and Opx in the pyroxenite pluton
图 9 东昆仑中灶火辉石岩体中斜方辉石成因判别图解(Rietmeijer, 1983)
Fig. 9. Fe2+/(Fe2++Mg) and 100×Ca/(Fe2++Mg+Ca) relation showing the compositions and origins of orthopyroxene in the pyroxenite pluton
表 1 东昆仑中灶火地区辉石岩主量元素与CIPW标准矿物含量(%)
Table 1. Major elements coposition and CIPW normative mineral content of the Zhongzaohuo pyroxenite
样品号 Bgnl-1 Bgnl-2 B3604 SiO2 51.91 51.97 51.67 TiO2 0.32 0.32 0.40 Al2O3 3.72 3.66 3.58 FeOT 7.63 7.40 8.47 MnO 0.13 0.12 0.17 MgO 19.19 19.45 18.90 CaO 14.78 14.52 14.90 Na2O 0.42 0.41 0.37 K2O 0.13 0.12 0.08 P2O5 0.011 0.009 0.010 H2O 0.08 0.02 LOI 1.92 2.06 1.25 Total 100.241 100.059 99.800 Pl 11.67 11.52 11.18 Or 0.77 0.71 0.47 Di 52.98 52.08 53.43 Hy 26.67 28.42 26.65 Ol 6.05 5.44 6.10 Ilm 0.63 0.63 0.78 Mt 1.23 1.20 1.35 Ap 0.02 0.02 0.02 Mg# 84.1 84.6 82.4 注:FeOT.全铁;Mg#=100×molar MgO/(MgO+FeOT). 表 2 东昆仑中灶火地区辉石岩微量元素及稀土元素分析结果(10-6)
Table 2. Trace elements and REE compositions of the Zhongzaohuo pyroxenite
样品号 Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Zr Nb Bgnl-1 18.0 0.29 39.4 184 1769 81.1 400 93.1 49.3 6.26 5.61 53.2 12.8 19.2 0.56 Bgnl-2 10.8 0.29 38.3 180 1712 78.9 395 103 50.1 6.13 5.42 46.3 12.5 18.1 0.50 B3604 20.4 0.38 48.8 230 608 64.0 207 62.5 75.7 9.00 1.79 55.2 18.9 22.4 0.30 样品号 Mo Sn Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Bgnl-1 0.21 0.65 0.80 27.2 2.78 8.09 1.37 6.95 2.08 0.50 2.37 0.39 2.54 0.49 1.41 Bgnl-2 0.14 0.66 0.84 27.0 2.65 7.96 1.30 6.72 2.05 0.47 2.20 0.39 2.45 0.47 1.33 B3604 0.40 13.9 3.72 9.04 1.67 8.94 2.89 0.65 3.02 0.55 3.51 0.69 1.91 样品号 Tm Yb Lu Hf Ta Pb Th U ∑LREE ∑HREE ∑LREE/∑HREE ∑REE (La/Lu)N La/Yb δEu Bgnl-1 0.20 1.20 0.17 0.79 0.15 3.39 0.64 0.35 21.8 8.78 2.48 31 1.73 2.32 0.68 Bgnl-2 0.19 1.24 0.18 0.76 0.15 5.66 0.70 0.33 21.2 8.45 2.51 30 1.60 2.14 0.68 B3604 0.28 1.78 0.26 0.96 0.039 6.54 0.25 0.21 26.91 12.00 2.24 38.9 1.51 2.08 0.67 注:∑REE、∑HREE不含Y;δEu=w(Eu)N/[0.5×(w(Sm)N+w(Gd)N)],下标N代表球粒陨石标准化. 表 3 单斜辉石和斜方辉石矿物对电子探针分析数据结果(%)
Table 3. Composition of Opx and Cpx in the Zhongzaohuo pyroxenite
分析点 1.2.1 1.2.2 3.3.1 3.3.2 5.6.1 5.6.2 5.10.1 5.10.2 矿物 Cpx Opx Opx Cpx Opx Cpx Cpx Opx SiO2 52.792 55.310 55.063 52.482 55.610 53.661 54.323 55.495 TiO2 0.329 0.093 0.115 0.466 0.040 0.305 0.128 0.115 Al2O3 0.170 0.138 0.107 0.169 0.101 0.137 0.084 0.087 Cr2O3 0.205 0.163 0.143 0.225 0.060 0.158 0.300 0.133 FeO 4.771 11.257 14.103 4.874 15.008 4.372 6.337 13.996 MnO 0.117 0.160 0.193 0.075 0.159 0.046 0.095 0.150 MgO 16.113 28.283 29.115 16.487 28.549 16.175 18.528 29.437 CaO 23.123 3.956 0.700 21.271 0.389 23.878 19.176 0.345 Na2O 0.506 0.035 0.015 0.639 0.000 0.432 0.358 0.040 K2O 0.000 0.000 0.000 0.048 0.024 0.018 0.154 0.006 Total 98.126 99.395 99.554 96.736 99.940 99.182 99.483 99.804 Si 1.979 7 1.985 0 1.980 9 1.988 1 1.995 5 1.987 0 1.995 5 1.986 7 AlⅣ 0.009 3 0.002 5 0.003 1 0.013 3 0.001 1 0.008 5 0.003 5 0.003 1 AlⅥ 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 Ti 0.009 3 0.002 5 0.003 1 0.013 3 0.001 1 0.008 5 0.003 5 0.003 1 Cr 0.006 1 0.004 6 0.004 1 0.006 7 0.001 7 0.004 6 0.008 7 0.003 8 Fe3+ 0.067 4 0.025 3 0.036 6 0.048 2 0.003 0 0.045 1 0.033 3 0.024 1 Fe2+ 0.081 4 0.311 8 0.386 4 0.105 6 0.447 3 0.089 8 0.160 8 0.394 1 Mn 0.003 7 0.004 9 0.005 9 0.002 4 0.004 8 0.001 4 0.003 0 0.004 6 Mg 0.900 8 1.513 2 1.561 4 0.931 1 1.527 2 0.892 9 1.014 6 1.571 0 Ca 0.929 1 0.152 1 0.027 0 0.863 4 0.015 0 0.947 4 0.754 8 0.013 2 Na 0.036 8 0.002 4 0.001 1 0.046 9 0.000 0 0.031 0 0.025 5 0.002 8 K 0.000 0 0.000 0 0.000 0 0.002 3 0.001 1 0.000 9 0.007 2 0.000 3 Wo 46.010 0 7.570 0 1.340 0 43.220 0 0.750 0 47.190 0 37.890 0 0.660 0 En 44.610 0 75.290 0 77.360 0 46.610 0 76.460 0 44.480 0 50.940 0 78.170 0 Fs 7.550 0 17.020 0 21.250 0 7.820 0 22.790 0 6.790 0 9.890 0 21.030 0 注:以6个O原子和4个阳离子为基准计算;此表仅列出用于计算温度的辉石矿物对的数据. 表 4 采用不同二辉石温度计的计算结果
Table 4. Temperature results calculated with the two-pyroxene thermometers
矿物对 1.2 3.3 5.6 5.10 Max Min Mean 计算方法参考文献 温度计算结果T(℃) 908 983 827 1 103 1 103 827 955 Wood and Banno, 1973 707 839 619 1 044 1 044 619 802 Nehru and Wyllie, 1974 776 996 617 1 399 1 399 617 947 Lindsley and Dixon, 1976 844 962 769 1 127 1 127 769 926 Wells, 1977 898 1 059 766 1 253 1 253 766 994 Bertrand and Mercier, 1985 797 962 668 1 132 1 132 668 890 Brey and Köhler, 1990 Opx-TCa, n=20 1 055.7 785.6 891.2 Brey and Köhler, 1990 -
Bertrand, P., Mercier, J.C.C., 1985. The Mutual Solubility of Coexisting Ortho- and Clinopyroxene: Toward an Absolute Geothermometer for the Natural System? Earth and Planetary Science Letters, 76(1): 109-122. doi: 10.1016/0012-821X(85)90152-9 Best, M.G., 1975. Amphibole-Bearing Cumulate Inclusions, Grand Canyon, Arizona and Their Bearing on Silica-Undersaturated Hydrous Magmas in the Upper Mantle. Journal of Petrology, 16(1): 212-236. doi: 10.1093/petrology/16.1.212 Bhattacharyya, C., 1971. An Evaluation of the Chemical Distinctions between Igneous and Metamorphic Orthopyroxenes. American Mineralogist, 56: 499-506. Brey, G.P., Köhler, T., 1990. Geothermobarometry in Four-Phase Lherzolites Ⅱ. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 31(6): 1353-1378. doi: 10.1093/petrology/31.6.1353 Chen, A.G., Ma, P.X., Li, H.Y., et al., 1996. The Main Characteristics and Age of Xiaozhangjiakou Ultrabasic Rocks in Chicheng County, Hebei Province. Acta Petrologica Sinica, 12(1): 156-162 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=2137966 Chen, B., Tian, W., Liu, A.K., 2008. Petrogenesis of the Xiaozhangjiakou Mafic-Ultramafic Complex, North Hebei: Constraints from Petrological, Geochemical and Nd-Sr Isotopic Data. Geological Journal of China Universities, 14(3): 295-303 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253566326.html Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007. EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen: Records of Multi-Tectono Metamorphic Events. Chinese Science Bulletin, 52(16): 2252-2263. doi: 10.1007/s11434-007-0299-5 Chen, N.S., Sun, M., Zhang, K.X., et al., 2001a. 40Ar-39Ar and U-Pb Ages of Metadiorite from the East Kunlun Orogenic Belt: Evidence for Early-Paleozoic Magmatic Zone and Excess Argon in Amphibole Minerals. Chinese Science Bulletin, 46(4): 330-334. doi: 10.1007/BF03187197 Chen, S., O'Reilly, S.Y., Zhou, X., et al., 2001b. Thermal and Petrological Structure of the Lithosphere beneath Hannuoba, Sino-Korean Craton, China: Evidence from Xenoliths. Lithos, 56(4): 267-301. doi: 10.1016/S0024-4937(00)00065-7 Downes, H., 2007. Origin and Significance of Spinel and Garnet Pyroxenites in the Shallow Lithospheric Mantle: Ultramafic Massifs in Orogenic Belts in Western Europe and NW Africa. Lithos, 99(1-2): 1-24. doi: 10.1016/j.lithos.2007.05.006 Fan, Q.C., Zhang, H.F., Sui, J., et al., 2005. Magma Underplating and Hannuoba Present Crust-mantle Transitional Zone Composition: Xenolith Petrological and Geochemical Evidence. Science in China (Series D), 35(1): 1-14 (in Chinese with English abstract). doi: 10.1360/04yd0007 Frey, F.A., Prinz, M., 1978. Ultramafic Inclusions from San Carlos, Arizona: Petrologic and Geochemical Data Bearing on Their Petrogenesis. Earth and Planetary Science Letters, 38(1): 129-176. doi: 10.1016/0012-821X(78)90130-9 Frey, F.A., 1980. The Origin of Pyroxenites and Garnet Pyroxenites from Salt Lake Crater, Oahu, Hawaii: Trace Element Evidence. American Journal of Science, 280: 427-449. http://www.researchgate.net/publication/284143436_The_origin_of_pyroxenites_and_garnet_pyroxenites_from_Salt_Lake_Crater_Oahu_Hawaii_Trace_element_evidence Garrido, C.J., Bodinier, J.L., 1999. Diversity of Mafic Rocks in the Ronda Peridotite: Evidence for Pervasive Melt-Rock Reaction during Heating of Subcontinental Lithosphere by Upwelling Asthenosphere. Journal of Petrology, 40(5): 729-754. doi: 10.1093/petroj/40.5.729 Hirschmann, M.M., Stolper, E.M., 1996. A Possible Role for Garnet Pyroxenite in the Origin of the "Garnet Signature" in MORB. Contributions to Mineralogy and Petrology, 124(2): 185-208. doi: 10.1007/s004100050184 Irving, A.J., 1974. Geochemical and High Pressure Experimental Studies of Garnet Pyroxenite and Pyroxene Granulite Xenoliths from the Delegate Basaltic Pipes, Australia. Journal of Petrology, 15(1): 1-40. doi: 10.1093/petrology/15.1.1 Jin, S.Q., Li, H.C., 1985. Introduction of the Genetic Mineralogy (Volume 2). Jilin University Press, Changchun, 203 (in Chinese). Kelemen, P.B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. doi: 10.1007/BF00311004 Kelemen, P.B., Hart, S.R., Bernstein, S., 1998. Silica Enrichment in the Continental Upper Mantle Via Melt/Rock Reaction. Earth and Planetary Science Letters, 164(1): 387-406. doi: 10.1016/S0012-821X(98)00233-7 Kornprobst, J., Piboule, M., Roden, M., et al., 1990. Corundum-Bearing Garnet Clinopyroxenites at Beni Bousera (Morocco): Original Plagioclase-Rich Gabbros Recrystallized at Depth within the Mantle? Journal of Petrology, 31(3): 717-745. doi: 10.1093/petrology/31.3.717 Li, R.S., Ji, W.H., Yang, Y.C., et al., 2008. Geology of Kunlun Mountains and Adjacent Areas. Geological Publishing House, Beijing, 1-390 (in Chinese). Lindsley, D.H., Dixon, S.A., 1976. Diopside-Enstatite Equilibria at 850 ℃ to 1 400 ℃, 5 to 35 k. B. American Journal of Science, 276(10): 1285-1301. doi: 10.2475/ajs.276.10.1285 Liu, C.D., 2008. Granitoid Magma Mixing in Eastern Part of the East Kunlun Orogenic Belt. Geological Publishing House, Beijing, 137 (in Chinese). Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun: Evidence from Zircon SHRIMP Ⅱ Chronology. Chinese Science Bulletin, 49(8): 828-834. doi: 10.1007/BF02889756 Liu, Y.S., Gao, S., Lee, C.T.A., et al., 2005. Melt-Peridotite Interactions: Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust. Earth and Planetary Science Letters, 234(1): 39-57. doi: 10.1016/j.epsl.2005.02.034 Liu, Y.S., Yuan, H.L., Gao, S., et al., 2004. Zircon U-Pb Ages of Olivine Pyroxenite Xenolith from Hannuoba: Links between the 97-158 Ma Basaltic Underplating and Granulite-Facies Metamorphism. Chinese Science Bulletin, 49(8): 790-797 (in Chinese with English abstract). doi: 10.1360/csb2004-49-8-790 Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1): 133-153. doi: 10.1016/j.chemgeo.2007.10.016 Luo, Z.H., Deng, J.F., Cao, Y.Q., et al., 1999. On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of East Kunlun, Qinghai Province. Geoscience, 13(1): 51-56 (in Chinese with English abstract). Mercier, J.C.C., 1980. Single-Pyroxene Thermobarometry. Tectonophysics, 70(1-2): 1-37. doi: 10.1016/0040-1951(80)90019-0 Mo, X. X, Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GXDX200703005.htm Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. doi: 10.1007/BF01226262 Nehru, C.E., Wyllie, P.J., 1974. Electron Microprobe Measurement of Pyroxenes Coexisting with H2O-Undersaturated Liquid in the Join CaMgSi2O6-Mg2Si2O6-H2O at 30 Kilobars, with Applications to Geothermometry. Contributions to Mineralogy and Petrology, 48(3): 221-228. doi: 10.1007/BF00383357 Pearce, J.A., Cann, J.R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5 Rietmeijer, F.J.M., 1983. Chemical Distinction between Igneous and Metamorphic Orthopyroxenes Especially Those Coexisting with Ca-Rich Clinopyroxenes: A Re-Evaluation. Mineralogical Magazine, 47: 143-151. doi: 10.1180/minmag.1983.047.343.04 Roger, F., Jolivet, M., Malavieille, J., 2008. Tectonic Evolution of the Triassic Fold Belts of Tibet. Comptes Rendus Geoscience, 340(2-3): 180-189. doi: 10.1016/j.crte.2007.10.014 Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Sun, Y., Pei, X., Ding, S., et al., 2009. Halagatu Magma Mixing Granite in the East Kunlun Mountains-Evidence from Zircon U-Pb Dating. Acta Geologica Sinica, 83(7): 1000-1010 (in Chinese with English abstract). http://www.researchgate.net/publication/285831263_Halagatu_magma_mixing_granite_in_the_east_Kunlun_Mountains-evidence_from_zircon_U-Pb_dating Wang, G.C., Wei, Q.R., Jia, C.X., et al., 2007. Some Ideas of Precambrian Geology in the East Kunlun, China. Geological Bulletin of China, 26(8): 929-937 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252288744.html Wells, P.R.A., 1977. Pyroxene Thermometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 62(2): 129-139. doi: 10.1007/BF00372872 Wilde, S.A., Zhou, X., Nemchin, A.A., et al., 2003. Mesozoic Crust-Mantle Interaction beneath the North China Craton: A Consequence of the Dispersal of Gondwanaland and Accretion of Asia. Geology, 31(9): 817. doi: 10.1130/G19489.1 Wood, B.J., Banno, S., 1973. Garnet-Orthopyroxene and Orthopyroxene-Clinopyroxene Relationships in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 42(2): 109-124. doi: 10.1007/BF00371501 Wu, C.L., Yang, J.S., Xu, Z.Q., et al., 2001. The Mineral Chemistry of Pyroxenite Xenoliths in the Volcanic Rocks of Hoh Xil and Their Significance. Science in China (Series D), 31(Supplement): 109-116 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=1004384455 Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3): 211-224. doi: 10.1007/s00710-011-0187-1 Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Early Palaeozoic Terrene Framework and Formation of the High Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200612001.htm Zhang, G.H., Zhou, X.H., Chen, S.H., et al., 1999a. Sr, Nd and Pb Isotopic Characteristics of Granulite and Pyroxenite Xenoliths from Hannuoba Basalts in Five-Dimensional Space and Their Geological Implications. Chinese Science Bulletin, 43(20): 2218-2222 (in Chinese). Zhang, G.H., Zhou, X.H., Sun, M., et al., 1998b. Heterogeneity of the Lower Crust: Evidence from Geochemistry of the Hannuoba Granulite Xenoliths, Hebei Province. Geochimica, 27(2): 153-169 (in Chinese with English abstract). http://www.researchgate.net/publication/291869253_Heterogeneity_of_the_lower_crust_Evidence_from_geochemistry_of_the_Hannuoba_granulite_xenoliths_Hebei_province Zhang, J.X., Meng, F.C., Wan, Y.S., et al., 2003. Early Paleozoic Tectono-Thermal Event of the Jinshuikou Group on the Southern Margin of Qaidam: Zircon U-Pb SHRIMP Age Evidence. Geological Bulletin of China, 22(6): 397-404 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252293404.html Zhang, Y.L., Xu, Y.G., 2012. Pyroxenttes: High-Pressure Segregates or Recycled Oceanic Crust? Geological Journal of China Universities, 18(1): 74-87 (in Chinese with English abstract). http://www.researchgate.net/publication/284595084_Pyroxenttes_High-pressure_segregates_or_recycled_oceanic_crust Zong, K.Q., Liu, Y.S., Gao, S., et al., 2005. In Situ Trace Elemental Compositions and Geodynamic Significance of Clinopyroxene in Pyrocenite Xenoliths from Hannuoba. Acta Petrologica Sinica, 21(3): 909-920 (in Chinese with English abstract). http://www.researchgate.net/publication/288069453_In_situ_trace_elemental_compositions_and_geodynamic_significance_of_clinopyroxene_in_pyroxenite_xenoliths_from_Hannuoba 陈安国, 马配学, 李洪阳, 等, 1996. 河北省赤城县小张家口超基性岩体主要特征和时代. 岩石学报, 12(1): 156-162. doi: 10.3321/j.issn:1000-0569.1996.01.014 陈斌, 田伟, 刘安坤, 2008. 冀北小张家口基性-超基性杂岩的成因: 岩石学、地球化学和Nd-Sr同位素证据. 高校地质学报, 14(3): 295-303. doi: 10.3969/j.issn.1006-7493.2008.03.002 樊祺诚, 张宏福, 隋建立, 等, 2005. 岩浆底侵作用与汉诺坝现今壳-幔边界组成——捕虏体岩石学与地球化学证据. 中国科学(D辑), 35(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200501000.htm 靳是琴, 李鸿超, 1985. 成因矿物学概论(下册). 长春: 吉林大学出版社, 203. 李荣社, 计文化, 杨永成, 等, 2008. 东昆仑及邻区地质. 北京: 地质出版社, 1-390. 刘成东, 2008. 东昆仑造山带东段花岗岩岩浆混合作用. 北京: 地质出版社, 137. 刘勇胜, 袁洪林, 高山, 等, 2004. 汉诺坝橄榄辉石岩包体锆石U-Pb年龄: 97~158 Ma岩浆底侵作用和麻粒岩相变质作用之间的成因联系. 科学通报, 49(8): 790-797. doi: 10.3321/j.issn:0023-074X.2004.08.016 罗照华, 邓晋福, 曹永清, 等, 1999. 青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化. 现代地质, 13(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm 莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 孙雨, 裴先治, 丁仨平, 等, 2009. 东昆仑哈拉尕吐岩浆混合花岗岩: 来自锆石U-Pb年代学的证据. 地质学报, 83(7): 1000-1010. doi: 10.3321/j.issn:0001-5717.2009.07.008 王国灿, 魏启荣, 贾春兴, 等, 2007. 关于东昆仑地区前寒武纪地质的几点认识. 地质通报, 26(8): 929-937. doi: 10.3969/j.issn.1671-2552.2007.08.003 吴才来, 杨经绥, 许志琴, 等, 2001. 可可西里辉石岩包体矿物化学及其地质意义. 中国科学(D辑), 31(增刊): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1016.htm 许志琴, 杨经绥, 李海兵, 等, 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002 张国辉, 周新华, 陈绍海, 等, 1998a. 汉诺坝玄武岩中麻粒岩和辉石岩捕虏体Sr-Nd-Pb同位素五维空间特征及其地质意义. 科学通报, 43(20): 2218-2222. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199820019.htm 张国辉, 周新华, 孙敏, 等, 1998b. 下地壳及壳幔过渡带化学不均一性──河北汉诺坝地区深源捕虏体元素地球化学证据. 地球化学, 27(2): 153-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199802006.htm 张建新, 孟繁聪, 万渝生, 等, 2003. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据. 地质通报, 22(6): 397-404. doi: 10.3969/j.issn.1671-2552.2003.06.004 张亚玲, 徐义刚, 2012. 辉石岩: 高压结晶还是再循环洋壳? 高校地质学报, 18(1): 74-87. doi: 10.3969/j.issn.1006-7493.2012.01.007 宗克清, 刘勇胜, 高山, 等, 2005. 汉诺坝辉石岩包体中单斜辉石的微区微量元素组成特征及其地球动力学意义. 岩石学报, 21(3): 909-920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503030.htm