Prediction Model of Petroleum Inclusion Trapping Pressure Constrained by Methane Mole Content
-
摘要: 石油包裹体显微测温和体积分析已经被广泛应用于重构石油包裹体组分和压力-温度(P-T)捕获条件, 然而, 其P-T捕获条件准确预测除精确的均一温度(Thoil)和气泡充填度(Fv)测试外, 还依赖于石油饱和压力和体积预测能力.基于改进石油流体饱和压力和气、液相摩尔体积预测精度, 建立了石油流体C7+组分摩尔含量与其Thoil和室温(20 ℃)下Fv之间的定量关系.尽管利用该定量关系可以极大地简化石油包裹体热动力学模拟过程, 还是不能避免Fv对热动力学模拟精度的影响.因此, 根据大量已知组分石油流体建立了甲烷摩尔含量约束的新的石油包裹体捕获压力预测模型.新模型中唯一变量即为石油包裹体甲烷摩尔含量, 并且不再依赖于专业的热动力学模拟软件(PVTsim、VTflinc、PIT和FIT-OIL), 从而极大地简化了传统石油包裹体捕获压力重构过程.最终, 新模型捕获压力预测精度得到评价, 石油包裹体甲烷摩尔含量对捕获压力重构具有重要控制作用, 单个石油包裹体甲烷含量定量化是未来石油包裹体捕获压力重构的主要研究方向.Abstract: Microthermometry and volumetric analysis have been widely used to reconstruct the composition and pressure-temperature (P-T) trapping conditions of petroleum inclusions. However, a reliable prediction of P-T trapping conditions also depends on accurate prediction of saturation pressure and volume of petroleum in addition to accurate measurements of homogenization temperature (Thoil) and the degree of bubble filling (Fv). Based on the improved prediction accuracy of saturation pressure and gas-liquid phase mole volume of petroleum fluids, the quantitative correlation among C7+ mole fraction and Thoil and Fv has been established. The correlation is still subject to the effect of Fv on the accuracy of petroleum inclusion thermodynamics modeling, although the processes for petroleum inclusion thermodynamics modeling can be largely simplified by using the correlation developed in this paper. So a new methane-constraining model for trapping pressure prediction of petroleum inclusion was developed according to large numbers of known petroleum compositions. The newly developed model has only one variable which is the methane mole fraction of petroleum inclusion and does not depend on professional softwares such as PVTsim, VTflinc, PIT, FIT-OIL and so on. Finally, the accuracy of newly developed model for trapping pressure prediction was tested, and the bulk methane mole fraction is the key control of the trapping pressure reconstruction and future research should be focused on the prediction of methane mole fraction of individual petroleum inclusion.
-
Key words:
- fluid /
- inclusions /
- methane /
- composition modeling /
- trapping pressure /
- thermodynamics
-
图 1 石油包裹体热动力学模拟流程(a)和典型的石油流体P-T相图(b)(图a据Ping et al., 2011)
体系包络线由泡点线和露点线组成, 临界点位于泡点线和露点线的交点.油包裹体P-T路径通过等容线来表示, 其中3个比较重要的点是油包裹体捕获点A(Pt, Tt)、均一化点B(Ph, Th)和室温下测定的气泡充填度P-T位置点C(Pv, Tv)
Fig. 1. Schematic view for petroleum inclusion thermodynamic modeling (a) and typical P-T phase diagram of a petroleum (b)
表 1 饱和压力预测精度比较(N=160)
Table 1. Prediction comparison of the saturation pressure between this paper method and the correlation of Elsharkawy (2003)
方法 平均相对偏差ARD(%) 平均绝对偏差AAD(%) 公式(7) 2.33 7.20 Elsharkawy (2003)方法 -2.59 9.23 注: $ A A D\left(P_{\mathrm{s}}\right)=\frac{1}{N} \sum\limits_{n=1}^{N}\left|\frac{P_{\mathrm{ct}}-P_{\mathrm{et}}}{P_{\mathrm{et}}}\right|, A R D\left(P_{\mathrm{s}}\right)=\frac{1}{N} \sum\limits_{n=1}^{N} \frac{P_{\mathrm{ct}}-P_{\mathrm{et}}}{P_{\mathrm{et}}}$, 其中Pct为计算的饱和压力, Pet为实测饱和压力, N为数据个数, 单位为%. 表 2 石油包裹体热动力学模拟重构捕获压力方法组合
Table 2. Strategies for trapping pressure prediction and the prediction comparison
热动力学模拟古压力方法 输入参数 中间参数 1 x1, Thoil, 1Tt 4Ph, 5PThoil+5 2 x1, Thoil, Fv, 2Tt 1x7+, 2α-β, 1Ps 3 Thoil, Fv, 1Tt 1x7+, 3x1, 4Ph, 5PThoil+5 4 Thoil, Fv, 2Tt 1x7+, 3x1, 2α-β, 1Ps 注: Thoil为石油包裹体均一温度;Tt为油包裹体的捕获温度;Pt为Tt对应的捕获压力;PThoil+5为Tt=Thoil+5 ℃时的捕获压力;Ph为Thoil条件下的饱和压力;1Ps为计算的α-β组分饱和压力;1x7+为计算的C7+摩尔含量(公式4);2α-β表示α-β组分是根据本文公式(4)简化的α-β组分模拟方法获取; 3x1代表甲烷摩尔含量, 根据 Ping et al. (2011) 中公式(17)获取;4Ph表示饱和压力根据本文中公式(5)获取;5PThoil+5表示Tt=Thoil+5 ℃的捕获压力, 根据本文公式(9)获取;1Tt代表捕获压力根据公式(14)获取;2Tt代表捕获压力根据获取的唯一α-β组分后再利用状态方程(EoS)计算获取.表 3 不同捕获压力预测方法精度比较
Table 3. The prediction comparison for trapping pressure reconstruction using different strategies
模拟古压力方法 ΔT=10 ℃ ΔT =20 ℃ ΔT =30 ℃ ΔT =40 ℃ ΔT=50 ℃ AAD (Pt)(%) AAD (Pt)(%) AAD (Pt)(%) AAD (Pt)(%) AAD (Pt)(%) AAD (Pt)(%) 1 5.85 5.92 6.09 6.43 6.73 6.44 2 8.49 7.23 6.53 5.82 5.51 6.92 3 16.18 13.86 12.33 10.96 10.37 13.07 4 18.06 15.47 13.78 11.86 11.04 14.54 注: $\Delta T=T_{\mathrm{t}}-T h_{\mathrm{oil}} ; A A D\left(P_{t}\right)=\frac{1}{N} \sum\limits_{n=1}^{N}\left|\frac{P_{\mathrm{ct}}-P_{\mathrm{rt}}}{P_{\mathrm{rt}}}\right| $, 其中Pct为计算的捕获压力, Prt为本文中参照捕获压力, N为数据个数, 单位为%. -
Ahmed, T., Cady, G., Story, A., 1985. A Generalized Correlation for Characterizing the Hydrocarbon Heavy Fraction. SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, 14266-MS. doi: 10.2118/14266-MS Aplin, A.C., Larter, S.R., Bigge, M.A., et al., 2000. Confocal Microscopy of Fluid Inclusions Reveals Fluid-Pressure Histories of Sediments and an Unexpected Origin of Gas Condensate. Geology, 28(11): 1047-1050. doi:10.1130/0091-7613(2000)28<1047 Aplin, A.C., Macleod, G., Larter, S.R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT Simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8 Bodnar, R., 1990. Petroleum Migration in the Miocene Monterey Formation, California, USA: Constraints from Fluid-Inclusion Studies. Mineralogical Magazine, 54(375): 295-304. doi: 10.1180/minmag.1990.054.375.15 Bourdet, J., Pironon, J., Levresse, G., et al., 2008. Petroleum Type Determination through Homogenization Temperature and Vapour Volume Fraction Measurements in Fluid Inclusions. Geofluids, 8(1): 46-59. doi: 10.1111/j.1468-8123.2007.00204.x Bourdet, J., Pironon, J., Levresse, G., et al., 2010. Petroleum Accumulation and Leakage in a Deeply Buried Carbonate Reservoir, NíSpero Field (Mexico). Marine and Petroleum Geology, 27(1): 126-142. doi: 10.1016/j.marpetgeo.2009.07.003 Burruss, R., 2003. Raman Microspectrometry of Fluid Inclusion. In: Samson, I., Anderson, A., Marshall, D.D., eds., Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Canada. Burruss, R.C., 1991. Practical Aspects of Fluorescence Microscopy of Petroleum Fluid Inclusions. In: Barker, C.E., Kopp, O.C., eds., Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, Tulsa, 1-7. doi: 10.2110/scn.91.25.0001 Caja, M.A., Permanyer, A., Kihle, J., et al., 2009. Fluorescence Quantification of Oil Fluid Inclusions and Oil Shows: Implications for Oil Migration (Armàcies Fm, South-Eastern Pyrenees, Spain). Journal of Geochemical Exploration, 101(1): 16-16. doi: 10.1016/j.gexplo.2008.11.053 Cao, J., Wang, X., Sun, P.A., et al., 2011. Grains Containing Oil Inclusions in Different Hydrocarbon Production and Show Types of Sandstone Reservoirs from the Central Junggar Basin, Northwest China. Acta Geologica Sinica(English Edition), 85(5): 1163-1172. doi: 10.1111/j.1755-6724.2011.00248.x Cavett, R., 1962. Physical Data for Distillation Calculations-Vapor-Liquid Equilibria. Proceeding of 27th Annual Meeting, API Division of Refining, Dallas, 42(3): 351-366. Conliffe, J., Blamey, N.F., Feely, M., et al., 2010. Hydrocarbon Migration in the Porcupine Basin, Offshore Ireland: Evidence from Fluid Inclusion Studies. Petroleum Geoscience, 16(1): 67-76. doi: 10.1144/1354-079309-007 Dereppe, J.M., Pironon, J., Moreaux, C., 1994. Characterization of the Composition of Fluid Inclusions in Minerals by 1H NMR. American Mineralogist, 79(7-8): 712-718. Eadington, P., Lisk, M., Krieger, F., 1996. Identify Oil Well Sites. United States Patent Application, 5: 543-616. Elsharkawy, A.M., 2003. An Empirical Model for Estimating the Saturation Pressures of Crude Oils. Journal of Petroleum Science and Engineering, 38(1-2): 57-77. doi: 10.1016/S0920-4105(03)00035-4 Ferket, H., Guilhaumou, N., Roure, F., et al., 2011. Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Cordoba Petroleum System (NE Mexico). Marine and Petroleum Geology, 28(4): 936-958. doi: 10.1016/j.marpetgeo.2010.01.020 Frezzotti, M.L., Tecce, F., Casagli, A., 2012. Raman Spectroscopy for Fluid Inclusion Analysis. Journal of Geochemical Exploration, 112: 1-20. doi: 10.1016/j.gexplo.2011.09.009 George, S.C., Dutkiewicz, A., Volk, H., et al., 2009. Oil-Bearing Fluid Inclusions from the Palaeoproterozoic: A Review of Biogeochemical Results from Time-Capsules>2.0 Ga Old. Science in China(Ser. D), 52(1): 1-11. doi: 10.1007/s11430-009-0004-4 George, S.C., Krieger, F.W., Eadington, P.J., et al., 1997. Geochemical Comparison of Oil-Bearing Fluid Inclusions and Produced Oil from the Toro Sandstone, Papua New Guinea. Organic Geochemistry, 26(3-4): 155-173. doi: 10.1016/S0146-6380(97)00004-1 Goldstein, R.H., Reynolds, T.J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEM Short Course 31, Society of Sedimentary Geology (SEPM), Tulsa, 199. Greenwood, P.F., George, S.C., Hall, K., 1998. Applications of Laser Micropyrolysis-Gas Chromatography-Mass Spectrometry. Organic Geochemistry, 29(5-7): 1075-1089. doi: 10.1016/S0146-6380(98)00101-6 Guilhaumou, N., Dumas, P., 2005. Synchrotron FTIR Hydrocarbon Fluid Inclusion Microanalysis Applied to Diagenetic History and Fluid Flow Reconstruction in Reservoir Appraisal. Oil & Gas Science and Technology, 60(5): 763-779. doi: 10.2516/ogst:2005054 Guilhaumou, N., Szydlowskii, N., Pradier, B., 1990. Characterization of Hydrocarbon Fluid Inclusions by Infra-Red and Fluorescence Microspectrometry. Mineralogical Magazine, 54(375): 311-324. doi: 10.1180/minmag.1990.054.375.17 Hanor, J.S., 1980. Dissolved Methane in Sedimentary Brines: Potential Effect on the PVT Properties of Fluid Inclusions. Economic Geology, 75(4): 603-609. doi: 10.2113/gsecongeo.75.4.603 Hao, F., Zhang, Z., Zou, H., et al., 2011. Origin and Mechanism of the Formation of the Low-Oil-Saturation Moxizhuang Field, Junggar Basin, China: Implication for Petroleum Exploration in Basins Having Complex Histories. AAPG Bulletin, 95(6): 983-1008. doi: 10.1306/11191010114 Hode, T., Zebühr, Y., Broman, C., 2006. Towards Biomarker Analysis of Hydrocarbons Trapped in Individual Fluid Inclusions: First Extraction by ErYAG Laser. Planetary and Space Science, 54(15): 1575-1583. doi: 10.1016/j.pss.2006.02.008 Horsfield, B., McLimans, R.K., 1984. Geothermometry and Geochemistry of Aqueous and Oil-Bearing Fluid Inclusions from Fateh Field, Dubai. Organic Geochemistry, 6: 733-740. doi: 10.1016/0146-6380(84)90094-9 Kay, W.B., 1936. Density of Hydrocarbon Gases and Vapors at High Temperature and Pressure. Industrial & Engineering Chemistry, 28(8): 1014-1019. doi: 10.1021/ie50321a008 Lisk, M., O'Brien., G.W., Eadington, P.J., 2002. Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bulletin, 86(9): 1531-1542. doi: 10.1306/61eedcec-173e-11d7-8645000102c1865d Mark, D.F., Parnell, J., Kelley, S.P., et al., 2010. 40Ar/39Ar Dating of Oil Generation and Migration at Complex Continental Margins. Geology, 38(1): 75-78. doi: 10.1130/g30237.1 Montel, F., 1993. Phase Equilibria Needs for Petroleum Exploration and Production Industry. Fluid Phase Equilibria, 84: 343-367. doi: 10.1016/0378-3812(93)85132-6 Munz, I.A., Johansen, H., Johanse, I., 1999. Characterisation of Composition and PVT Properties of Petroleum Inclusions: Implications of Reservoir Filling and Compartmentalisation. SPE Annual Technical Conference and Exhibition, Houston, Texas. doi: 10.2118/56519-MS Pan, C., Liu, D., 2009. Molecular Correlation of Free Oil, Adsorbed Oil and Inclusion Oil of Reservoir Rocks in the Tazhong Uplift of the Tarim Basin, China. Organic Geochemistry, 40(3): 387-399. doi: 10.1016/j.orggeochem.2008.11.005 Pang, L.S.K., George, S.C., Quezada, R.A., 1998. A Study of the Gross Compositions of Oil-Bearing Fluid Inclusions Using High Performance Liquid Chromatography. Organic Geochemistry, 29(5-7): 1149-1161. doi: 10.1016/S0146-6380(98)00135-1 Parnell, J., Carey, P.F., Monson, B., 1996. Fluid Inclusion Constraints on Temperatures of Petroleum Migration from Authigenic Quartz in Bitumen Veins. Chemical Geology, 129(3-4): 217-226. doi: 10.1016/0009-2541(95)00141-7 Peng, D., Robinson, D., 1976. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Research Fundamentals, 15(1): 59-64. doi: 10.1021/i160057a011 Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012a. Contributions Degree of Petroleum Charging to Oil and Gas Accumulation and Its Significance. Earth Science-Journal of China University of Geosciences, 37(1): 163-170 (in Chinese with English abstract). http://www.researchgate.net/publication/287944233_Contributions_degree_of_petroleum_charging_to_oil_and_gas_accumulation_and_its_significance Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012b. Accumulation History of the Deeply Buried Condensate Reservoir in Minfeng Sag of the Northern Dongying Depression and Its Exploration Significance. Acta Petrolei Sinica, 33(6): 970-977 (in Chinese with English abstract). Ping, H.W., Chen, H.H., Thiéry, R., 2013. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturation Pressure Prediction and Volume Calibration. Earth Science-Journal of China University of Geosciences, 38(1): 143-155 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.014 Ping, H.W., Thiéry, R., Chen, H.H., 2011. Thermodynamic Modeling of Petroleum Inclusions: The Prediction of the Saturation Pressure of Crude Oils. Geofluids, 11(3): 328-340. doi: 10.1111/j.1468-8123.2011.00343.x Pironon, J., Canals, M., Dubessy, J., et al., 1998. Volumetric Reconstruction of Individual Oil Inclusions by Confocal Scanning Laser Microscopy. European Journal of Mineralogy, 10(6): 1143-1150. doi: 10.1127/ejm/10/6/1143 Qiu, H.N., Wu, H.Y., Yun, J.B., et al., 2011. High-Precision 40Ar/39Ar Age of the Gas Emplacement into the Songliao Basin. Geology, 39(5): 451-454. doi: 10.1130/g31885.1 Rao, D., Qin, J.Z., Zhang, Z.R., et al., 2010. Composition Analyses of Individual Hydrocarbon Inclusion. Petroleum Geology & Experiment, 32(1): 67-70 (in Chinese with English abstract). Riazi, M.R., Al-Sahhaf, T.A., 1996. Physical Properties of Heavy Petroleum Fractions and Crude Oils. Fluid Phase Equilibria, 117(1-2): 217-224. doi: 10.1016/0378-3812(95)02956-7 Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, Washington, 646. Ryder, A., 2004. Assessing the Maturity of Crude Petroleum Oils Using Total Synchronous Fluorescence Scan Spectra. Journal of Fluorescence, 14(1): 99-104. doi:1053-0509/03/0100-0099/0 Stasiuk, L.D., Snowdon, L.R., 1997. Fluorescence Micro-spectrometry of Synthetic and Natural Hydrocarbon Fluid Inclusions: Crude Oil Chemistry, Density and Application to Petroleum Migration. Applied Geochemistry, 12(3): 229-241. doi: 10.1016/S0883-2927(96)00047-9 Suchý, V., Dobes, P., Sýkorová, I., et al., 2010. Oil-Bearing Inclusions in Vein Quartz and Calcite and, Bitumens in Veins: Testament to Multiple Phases of Hydrocarbon Migration in the Barrandian Basin (Lower Palaeozoic), Czech Republic. Marine and Petroleum Geology, 27(1): 285-297. doi: 10.1016/j.marpetgeo.2009.08.017 Teinturier, S., Pironon, J., Walgenwitz, F., 2002. Fluid Inclusions and PVTX Modelling: Examples from the Garn Formation in Well 6507/2-2, Haltenbanken, Mid-Norway. Marine and Petroleum Geology, 19(6): 755-765. doi: 10.1016/S0264-8172(02)00055-7 Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2000. PIT (Petroleum Inclusion Thermodynamic): A New Modeling Tool for the Characterization of Hydrocarbon Fluid Inclusions from Volumetric and Microthermometric Measurements. Journal of Geochemical Exploration, 69-70: 701-704. doi: 10.1016/S0375-6742(00)00085-6 Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002. Individual Characterization of Petroleum Fluid Inclusions (Composition and P-T Trapping Conditions) by Microthermometry and Confocal Laser Scanning Microscopy: Inferences from Applied Thermodynamics of Oils. Marine and Petroleum Geology, 19(7): 847-859. doi: 10.1016/S0264-8172(02)00110-1 Tseng, H.Y., Pottorf, R.J., 2002. Fluid Inclusion Constraints on Petroleum PVT and Compositional History of the Greater Alwyn-South Brent Petroleum System, Northern North Sea. Marine and Petroleum Geology, 19(7): 797-809. doi: 10.1016/S0264-8172(02)00088-0 Volk, H., Fuentes, D., Fuerbach, A., et al., 2010. First On-line Analysis of Petroleum from Single Inclusion Using Ultrafast Laser Ablation. Organic Geochemistry, 41(2): 74-77. doi: 10.1016/j.orggeochem.2009.05.006 Wang, F.Y., Shi, Y.L., Zeng, H.S., et al., 2006. To Identify Paleo-oil Reservoir and to Constrain Petroleum Charging Model Using the Abundance of Oil Inclusions. Bulletin of Mineralogy, Petrology and Geochemistry, 25(1): 12-18(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KYDH200601001.htm Zhang, Z.R., Zhang, M.Q., Xi, B.B., et al., 2011. On-line Analysis of Oil-Bearing Fluid Inclusions with Laser Ablation GC-MS. Petroleum Geology & Experiment, 33(4): 437-440(in Chinese with English abstract). 平宏伟, 陈红汉, 宋国奇, 等, 2012a. 油气充注成藏贡献度及其意义. 地球科学—中国地质大学学报, 37(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201020.htm 平宏伟, 陈红汉, 宋国奇, 等, 2012b. 东营凹陷北带民丰洼陷深层凝析油藏成藏史及其勘探意义. 石油学报, 33(6): 970-977. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206008.htm 平宏伟, 陈红汉, Thiéry, R., 2013. 石油包裹体热动力学模拟古压力改进: 饱和压力预测和体积校正. 地球科学—中国地质大学学报, 38(1): 144-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301019.htm 饶丹, 秦建中, 张志荣, 等, 2010. 单体烃包裹体成分分析. 石油实验地质, 32(1): 67-70. doi: 10.3969/j.issn.1001-6112.2010.01.013 王飞宇, 师玉雷, 曾花森, 等, 2006. 利用油包裹体丰度识别古油藏和限定成藏方式. 矿物岩石地球化学通报, 25(1): 12-18. doi: 10.3969/j.issn.1007-2802.2006.01.002 张志荣, 张暋渠, 席斌斌, 等, 2011. 含油包裹体在线激光剥蚀色谱-质谱分析. 石油实验地质, 33(4): 437-440. doi: 10.3969/j.issn.1001-6112.2011.04.020