Petrogenesis of Olivine-Bearing Clinopyroxenite Xenolith in Early Cretaceous Adakitic Rocks from Xuhuai Area in Eastern China and Its Petrologic Implication
-
摘要: 报道了徐淮地区早白垩世埃达克质岩中首次发现的含橄榄石单斜辉石岩捕虏体的岩相学与矿物化学资料, 该类捕虏体显示堆积结构、块状构造, 主要由单斜辉石(~80%)、斜方辉石(~5%)、橄榄石(~5%)和普通角闪石(~10%)组成.橄榄石外侧发育有斜方辉石反应边, 角闪石沿辉石粒间分布, 呈嵌晶结构.矿物化学分析结果表明: 橄榄石的镁橄榄石分子值(Fo)=77.7~79.3, Ni=623×10-6~773×10-6; 斜方辉石的Mg#=75.6~80.2, Cr=161×10-6~684×10-6, Ni=79×10-6~708×10-6; 单斜辉石的Mg#=84.5~86.4, CaO=21.59%~23.13%, Al2O3=1.72%~2.44%.上述矿物与中、新生代玄武岩中橄榄石、斜方辉石和单斜辉石斑晶以及堆积成因辉石岩中的斜方辉石和单斜辉石成分类似.此外, 单斜辉石的稀土配分型式以相对富含中稀土元素的上凸型为特征, 稀土元素含量较低(∑REE=10.14×10-6~12.71×10-6), 无明显的铕异常(δEu=0.90~1.16), 类似于新生代玄武岩中单斜辉石斑晶.捕虏体中的普通角闪石的Mg#=74.0~80.4、SiO2=43.2%~44.5%、Na2O=2.04%~2.29%, 稀土元素分馏不明显, 显示亏损高场强元素(HFSEs, 如Nb、Ta、Zr、Hf), 富集Sr、Rb、Ba的特征, 与新生代玄武岩中角闪石捕虏晶成分不同.结合其嵌晶结构, 普通角闪石应是寄主岩浆贯入结晶的产物.综合上述特征, 可以看出含橄榄石单斜辉石捕虏体为镁铁质岩浆高压堆晶成因.结合华北克拉通东部早白垩世双峰式火山岩组合的出现, 推断含橄榄石单斜辉石岩捕虏体可能是早白垩世基性岩浆底侵的产物.Abstract: The petrography and mineral chemical data of olivine-bearing clinopyroxenite xenolith entrained by the Early Cretaceous adakitic rocks in Xuhuai area, eastern China are reported in this paper. Olivine-bearing clinopyroxenite consists of clinopyroxene (~80%), orthopyroxene (~5%), olivine (~5%), and hornblende (~10%) and displays cumulate texture and massive structure. The orthopyroxene reaction rim can be found around olivine. The hornblendes occur among pyroxenes, and display poikilitic texture. The mineral chemical data indicate that olivines have forsterite (Fo)=77.7-79.3 and Ni=623×10-6-773×10-6, that orthopyroxenes have Mg#=75.6-80.2, Cr=161×10-6-684 ×10-6, and Ni=79×10-6-708×10-6, and that clinopyroxenes have Mg#=84.5-86.4, CaO=21.59%-23.13%, Al2O3=1.72%-2.44%. Chemically, these minerals are similar to the olivine, orthopyroxene, and clinopyroxene phenocrysts from the Mesozoic and Cenozoic basalts and those from the pyroxenites with cumulate origin. Additionally, the clinopyroxenes from the xenolith are characterized by convex upward rare earth element (REE) distribution patterns, low REE contents (∑REE=10.14×10-6-12.71×10-6), and no Eu anomalies (δEu=0.90-1.16), similar to the clinopyroxene phenocrysts in the Cenozoic basalts. Hornblendes in this xenolith have Mg#=74.0-80.4, SiO2=43.2%-44.5%, Na2O=2.04%-2.29%, and display flat REE patterns and depletion in high field strength elements (HFSEs, Nb, Ta, Zr and Hf) and Th as well as enrichment in Sr, Rb and Ba, different from those hornblende xenocrysts from Cenozoic basalts. Combined with its poikilitic texture, it is suggested that these hornblendes could be formed by injection of the host magma. Taken together, we conclude that the olivine-bearing clinopyroxenite xenolith could be formed by the high-pressure accumulation of basaltic melt. Combined with Early Cretaceous bimodal magmatism in eastern China, it is suggested that the olivine-bearing clinopyroxenite could be generated by the underplating of mantle-derived basaltic magma.
-
Key words:
- Early Cretaceous /
- adakitic rock /
- olivine-bearing clinopyroxenite xenolith /
- petrogenesis /
- petrology /
- Xuhuai area
-
图 1 徐淮地区中生代侵入杂岩体分布(据Xu et al., 2006a)
Fig. 1. Distribution map of the Mesozoic intrusions in Xuhuai area
图 3 橄榄石的Fo值与Ni(a)、Mn(b)含量的变异图解
橄榄岩中橄榄石数据引自Xu et al.(2010);含橄榄石的单斜辉石岩中橄榄石的成分引自Zhang et al.(2010);含橄榄石的二辉石岩中橄榄石的数据引自Xu et al.(2013);橄榄石斑晶数据王微(2008)
Fig. 3. Plots of Fo vs. Ni(a) and Mn(b) contents for olivines from olivine clinopyroxenite xenolith
图 5 单斜辉石的球粒陨石标准化稀土元素型式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据引自Sun and McDonough(1989);二辉橄榄岩数据王微(2008);含橄榄石的二辉石岩数据引自Xu et al.(2013);单斜辉石斑晶数据路思明(2012a)
Fig. 5. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) of clinopyroxenes from the olivine clinopyroxenite xenolith
图 6 普通角闪石的球粒陨石标准化稀土元素型式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据引自Sun and McDonough(1989);普通角闪石捕掳晶数据未发表
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) of hornblendes from the olivine clinopyroxenite xenolith
图 4 单斜辉石的Mg#与TiO2(a)、Al2O3(b)、Na2O(c)、CaO(d)变异图解
橄榄岩数据王微(2008),Xu et al.(2008);单斜辉石斑晶数据引自Xu et al.(2003),裴福萍等(2004);路思明(2012a);辉石岩(Ⅰ)数据王冬艳等(2004);Zhang et al.(2010);辉石岩(Ⅱ)数据引自Xu et al.(2013);辉石岩(Ⅲ)数据引自Yu et al.(2010)
Fig. 4. Plots of Mg# vs. TiO2(a), Al2O3(b), CaO(c), and Na2O (d) for clinopyroxenes from olivine-bearing clinopyroxenite xenolith
图 7 与含橄榄石单斜辉石岩中单斜辉石平衡的熔体的球粒陨石标准化稀土元素形式
球粒陨石标准化数据引自Boynton(1984);分配系数引自Lemarchand et al.(1987);二长闪长斑岩数据来自王清海(2003);玄武岩数据来自Zhang et al.(2002)和裴福萍等(2004)
Fig. 7. Chondrite-normalized REE patterns of melts in equilibrium with the clinopyroxenes in the olivine clinopyroxenite
表 1 含橄榄石单斜辉石岩捕虏体中橄榄石的主量元素(%)和痕量元素(10-6)分析结果
Table 1. Major (%) and trace element contents (10-6) of olivines from olivine-bearing clinopyroxenite xenolith
样品编号 SiO2 Cr2O3 FeO MnO MgO CaO NiO Total Fo Sc V Cr Co Ni JG12-1 37.9 0.04 20.1 0.32 41.3 0.02 0.03 99.6 78.6 JG12-2 38.2 0.00 20.1 0.30 40.9 0.15 0.05 99.8 78.5 JG12-4 38.8 0.06 20.9 0.24 40.6 0.08 0.09 100.8 77.7 JG12-5 37.9 0.00 20.0 0.28 41.8 0.03 0.09 100.2 78.8 JG12-6 37.3 0.05 19.4 0.30 41.3 0.09 0.12 98.6 79.2 JG12-8 38.1 19.8 0.30 41.0 0.02 0.03 99.2 78.7 JG12-9 37.7 20.1 0.27 40.7 0.01 0.13 99.0 78.3 JG12-10 38.0 19.4 0.29 41.6 0.02 0.17 99.5 79.3 JG12-11 37.9 19.8 0.31 41.4 0.01 0.08 99.5 78.9 JG12-1* 37.9 20.8 0.29 40.8 0.02 77.8 3.87 1.36 28.9 202 645 JG12-2* 37.2 20.8 0.29 41.5 0.07 78.1 3.94 2.61 36.9 213 694 JG12-3* 37.5 20.5 0.30 41.4 0.03 78.3 2.18 0.55 2.53 242 773 注:*为LA-ICP-MS分析,其他为电子探针分析. 表 2 含橄榄石单斜辉石岩捕虏体中斜方辉石, 单斜辉石和角闪石的主量元素(%)分析结果
Table 2. Major (%) element contents of orthopyroxenes, clinopyroxenes and hornblendes from olivine-bearing clinopyroxenite xenolith
样品编号 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO Total Mg# Cr Ni Wo En Fs 斜方辉石 JG12-1 53.4 0.11 2.37 0.03 12.9 0.25 28.4 0.97 0.040 0.09 98.6 79.8 1.91 77.9 20.2 JG12-2 53.9 0.07 2.36 0.10 13.5 0.32 28.9 0.57 0.010 0.00 99.6 79.3 1.11 78.0 20.9 JG12-3 54.1 0.13 2.50 0.07 12.8 0.25 29.0 0.94 0.000 0.05 99.7 80.2 1.83 78.4 19.7 JG12-4 53.8 0.14 2.54 0.05 13.1 0.30 29.2 0.97 0.050 0.05 100.1 79.9 1.86 78.1 20.1 JG12-5 54.4 0.15 2.28 0.04 13.7 0.31 29.0 0.95 0.060 0.04 100.9 79.1 1.82 77.2 21.0 JG12-6 54.3 0.08 2.28 0.05 13.7 0.31 28.7 0.82 0.090 0.01 0.01 100.3 78.9 1.59 77.2 21.2 JG12-1* 52.5 0.11 2.84 15.7 0.31 27.3 1.14 0.034 0.00 99.9 75.6 202 211 2.21 73.6 24.2 JG12-2* 53.4 0.08 1.54 15.3 0.31 28.2 1.08 0.031 0.00 99.9 76.8 161 194 2.06 74.7 23.2 JG12-3* 53.0 0.10 2.57 14.9 0.31 28.0 0.97 0.030 0.01 99.8 77.0 341 209 1.87 75.2 22.9 JG12-4* 53.5 0.09 2.28 14.0 0.30 28.8 0.93 0.025 0.00 99.9 78.7 304 202 1.78 76.8 21.4 JG12-5* 53.5 0.08 1.92 14.5 0.31 28.5 0.99 0.026 0.00 99.9 77.8 205 197 1.90 76.0 22.1 单斜辉石 JG12-1 52.4 0.19 2.25 0.68 4.84 0.17 16.5 21.6 0.41 0.02 0.00 99.0 85.9 44.6 47.3 8.08 JG12-2 52.3 0.24 2.26 0.32 5.31 0.08 16.3 22.1 0.40 0.00 0.07 99.3 84.5 45.2 46.2 8.61 JG12-3 52.4 0.28 2.14 0.11 4.86 0.13 16.3 22.1 0.36 0.00 0.03 98.6 85.7 45.5 46.5 8.01 JG12-4 52.5 0.20 2.15 0.53 4.63 0.12 16.5 21.8 0.40 0.02 0.06 98.8 86.4 45.0 47.3 7.66 JG12-5 52.5 0.19 1.54 0.18 5.40 0.19 16.2 22.4 0.36 0.02 0.00 99.0 84.3 45.4 45.7 8.87 JG12-6 52.9 0.25 1.72 0.38 4.95 0.12 16.3 22.7 0.39 0.01 0.00 99.8 85.5 46.0 46.0 8.01 JG12-7 52.7 0.22 2.21 0.45 4.97 0.14 16.5 21.8 0.44 0.01 0.05 99.5 85.6 44.7 47.1 8.18 JG12-1* 50.7 0.20 2.44 5.57 0.14 17.3 22.6 0.46 0.06 99.4 84.7 3 274 49.5 44.2 47.0 8.73 JG12-2* 50.8 0.19 2.22 5.10 0.13 17.4 23.1 0.37 99.3 85.9 4 176 74.0 44.9 47.1 7.95 JG12-3* 51.4 0.19 1.99 5.34 0.14 17.2 23.1 0.36 99.7 85.2 1 738 18.8 45.1 46.6 8.34 JG12-4* 51.2 0.20 2.10 5.41 0.14 17.3 22.9 0.35 99.7 85.1 1 646 36.7 44.6 46.9 8.44 JG12-5* 50.8 0.19 2.30 5.47 0.15 17.4 22.6 0.38 99.3 85.0 4 293 94.8 44.2 47.3 8.58 JG12-6* 50.8 0.19 2.33 5.38 0.15 17.3 22.8 0.39 99.3 85.2 4 302 100 44.5 47.1 8.44 JG12-7* 50.7 0.19 2.40 5.21 0.15 17.6 22.7 0.38 99.3 85.8 4 044 96.0 44.3 47.6 8.16 JG12-8* 50.6 0.19 2.34 5.10 0.14 17.7 22.9 0.38 99.3 86.1 4 226 71.4 44.4 47.7 7.94 普通角闪石 JG12-1 43.7 0.81 11.2 0.42 7.67 0.10 17.6 11.3 2.04 1.11 0.04 96.0 80.4 JG12-2 43.2 0.75 12.1 0.21 9.19 0.13 16.1 11.0 2.27 1.14 0.03 96.2 75.8 JG12-3 43.9 0.68 11.9 0.24 8.86 0.10 16.2 11.4 2.07 1.10 0.03 96.5 76.5 JG12-4 43.8 1.06 12.0 0.19 9.22 0.11 16.0 10.7 2.10 1.38 0.02 96.5 75.6 JG12-1* 44.5 0.73 12.1 10.30 0.15 16.9 11.7 2.21 1.17 74.6 536 259 JG12-2* 44.4 0.96 12.2 10.50 0.16 16.8 11.4 2.25 1.10 74.0 991 304 JG12-3* 43.9 0.97 12.9 9.37 0.12 16.7 11.9 2.29 1.46 76.2 1413 246 JG12-4* 44.2 0.89 12.5 10.40 0.16 16.7 11.5 2.23 1.16 74.1 802 278 注:*为LA-ICP-MS分析, 其他为电子探针分析,Mg#=Mg/(Mg+Fe2+). 表 3 含橄榄石单斜辉石岩捕虏体中单斜辉石和普通角闪石的痕量元素(10-6)分析结果
Table 3. Trace element contents (10-6) of clinopyroxenes and hornblendes from olivine-bearing clinopyroxenite xenolith
样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE (La/Yb)N δEu 单斜辉石 JG12-1* 1.02 3.08 0.55 2.83 1.04 0.3 0.98 0.23 1.21 0.23 0.66 0.07 0.41 0.08 12.7 1.66 0.9 JG12-2* 0.63 2.16 0.43 2.52 0.97 0.33 0.87 0.15 1.12 0.23 0.78 0.07 0.49 0.06 10.8 0.87 1.08 JG12-3* 0.86 2.43 0.45 2.29 0.96 0.27 1.02 0.15 1.13 0.19 0.61 0.07 0.48 0.06 11.0 1.19 0.83 JG12-4* 0.67 2.28 0.42 2.49 0.65 0.26 0.89 0.18 0.96 0.20 0.60 0.07 0.41 0.06 10.2 1.09 1.06 JG12-5* 0.56 1.84 0.33 1.92 0.69 0.34 1.22 0.16 1.43 0.27 0.68 0.09 0.52 0.08 10.1 0.73 1.13 JG12-6* 0.54 1.95 0.39 2.41 0.84 0.31 0.75 0.22 1.24 0.25 0.72 0.07 0.47 0.05 10.2 0.78 1.16 JG12-7* 0.50 1.65 0.39 2.52 0.75 0.30 0.9 0.21 1.18 0.26 0.77 0.09 0.51 0.09 10.1 0.66 1.10 JG12-8* 0.58 2.13 0.40 2.19 0.96 0.34 1.26 0.16 1.40 0.27 0.71 0.08 0.55 0.07 11.1 0.72 0.94 普通角闪石 JG12-1* 3.08 10.6 1.89 8.97 2.59 1.06 3.37 0.54 3.30 0.68 2.25 0.25 1.81 0.26 40.6 JG12-2* 1.53 6.34 1.17 7.7 2.56 0.86 2.95 0.60 4.26 0.78 2.45 0.23 1.75 0.31 33.5 JG12-3* 1.90 7.57 1.45 7.32 2.59 1.07 3.26 0.53 3.80 0.70 2.31 0.23 2.04 0.22 35.0 JG12-4* 2.23 7.99 1.48 9.17 2.89 0.83 3.17 0.58 4.12 0.71 2.23 0.23 1.98 0.30 37.9 样品编号 Rb Sr Ba Nb Ta Zr Hf Th Y Ti Sc V Cr Co Ni U Ti/Eu 单斜辉石 JG12-1* 2.52 102 66.2 0.16 0.01 5.07 0.25 0.15 5.94 1 210 62.8 161 3 274 33.2 49.5 0.03 4 004 JG12-2* 0.03 75 0.23 0.00 2.13 0.15 0.01 5.34 1 154 62.4 159 4 176 31.7 74.0 0.05 3 502 JG12-3* 0.03 82 0.06 0.01 2.98 0.21 0.03 5.21 1 121 68.4 174 1 738 30.9 18.8 0.01 4 115 JG12-4* 0.02 74 0.12 2.31 0.11 0.02 5.56 1 210 66.7 176 1 646 32.2 36.7 0.01 4 572 JG12-5* 0.10 52 0.40 1.85 0.16 0.01 6.50 1 117 67.0 168 4 293 32.9 94.8 0.05 3 266 JG12-6* 0.05 57 0.12 0.01 0.01 2.30 0.11 0.01 6.04 1 140 63.9 171 4302 31.7 100.0 3 711 JG12-7* 0.05 57 0.08 1.83 0.13 0.01 6.22 1 109 66.8 165 4 044 31.6 96.0 0.15 3 731 JG12-8* 0.17 67 0.90 0.04 0.01 2.95 0.13 0.05 6.49 1141 66.7 157 4 226 31.7 71.4 0.01 3 354 普通角闪石 JG12-1* 15.3 317 318 1.36 0.10 22.9 1.16 0.05 18.8 3 921 30.8 140 536 71.8 259 0.02 JG12-2* 13.2 207 175 0.54 0.04 17.0 0.85 0.02 22.3 5 174 56.6 217 991 76.8 304 0.02 JG12-3* 10.2 244 273 1.07 0.05 16.0 0.71 0.04 20.5 5 198 45.1 267 1413 62.0 246 0.03 JG12-4* 14.4 250 226 0.68 0.06 20.1 0.96 0.04 20.1 4 758 45.3 187 802 79.4 278 0.03 注:*为LA-ICP-MS分析,(La/Yb)N=(La/0.310)/(Yb/0.209);δEu=2×(Eu/0.0735)/((Sm/0.195)+(Gd/0.259));(La/Yb)N球粒陨石标准化数据采用Boynton(1987). -
Allegre, C., Turcotte, D.L., 1986. Implications of a Two Component Marble-Cake Mantle. Nature, 323: 123-127. doi: 10.1038/323123a0 Becker, H., 1996. Geochemistry of Garnet Peridotite Massifs from Lower Austria and the Composition of Deep Lithosphere beneath a Paleozoic Convergent Plate Margin. Chemical Geology, 134(1-3): 49-65. doi: 10.1016/S0009-2541(96)00089-7 Bondi, M., Morten, L., Nimis, P., et al., 2002. Megacrysts and Mafic-Ultramafic Xenolith-Bearing Ignimbrites from Sirwa Volcano, Morocco: Phase Petrology and Thermobarometry. Mineralogy and Petrology, 75(3-4): 203-221. doi: 10.1007/s007100200024 Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. Chen, B., Jahn, B.M., Suzuki, K., 2013. Petrological and Nd-Sr-Os Isotopic Constraints on the Origin of High-Mg Adakitic Rocks from the North China Craton: Tectonic Implications. Geology, 41(1): 91-94. doi: 10.1130/G33472.1 Chen, L.H., 2001. Genesis of High-Mg Intrusions and Their Ultramafic Xenoliths, Laiwu, Shandong Province, Eastern China(Dissertation). Chinese Academy of Sciences, Beijing (in Chinese with English abstract). Chen, S.H., O'Reilly, S.Y., Zhou, X.H., et al., 2001. Thermal and Petrological Structure of the Lithosphere beneath Hannuoba, Sino-Korean Craton, China: Evidence from Xenoliths. Lithos, 56(4): 267-301. doi:S0024-4937(00)00065-7 Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. doi: 10.1038/347662a0 Downes, H., 2007. Origin and Significance of Spinel and Garnet Pyroxenites in the Shallow Lithospheric Mantle: Ultramafic Massifs in Orogenic Belts in Western Europe and NW Africa. Lithos, 99: 1-24. doi: 10.1016/j.lithos.2007.05.006 Frey, F.A., Green, D.H., Roy, S.D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463-513. doi: 10.1093/petrology/19.3.463 Frey, F.A., Prinz, M., 1978. Ultramafic Inclusions from San Carlos, Arizona—Petrologic and Geochemical Data Bearing on Their Petrogenesis. Earth and Planetary Science Letters, 38(1): 29-176. doi: 10.1016/0012-821X(78)90130-9 Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. doi: 10.1038/nature03162 Garrido, C.J., Bodinier, J.L., 1999. Diversity of Mafic Rocks in the Ronda Peridotite: Evidence for Pervasive Melt-Rock Reaction during Heating of Subcontinental Lithosphere by Upwelling Asthenosphere. Journal of Petrology, 40(5): 729-754. doi: 10.1093/petroj/40.5.729 Grove, T.L., Parman, S.W., Bowring, S.A., et al., 2002. The Role of H2O-Rich Fluid Component in the Generation of Primitive Basaltic Andesites and Andesites from the Mt. Shasta Region, N California. Contrib. Mineral. and Petrol. , 142: 375-396. doi: 10.1007/s004100100299 Irving, A.J., Frey, F.A., 1984. Trace-Element Abundances in Megacrysts and Their Host Basalts—Constraints on Partition Coefficients and Megacryst Genesis. Geochimica et Cosmochimica Acta, 48(6): 1201-1221. doi: 10.1016/0016-7037(84)90056-5 Irving, A.J., Price, R.C., 1981. Geochemistry and Evolution of Highpressure Phonolitic Lavas from Nigeria, Australia, Eastern Germany, and New Zealand. Geochimica et Cosmochimica Acta, 45: 1309-1320. doi: 10.1016/0016-7037(81)90224-6 Leake, B.E., 1978. Nomenclature of Amphiboles. The Canadian Mineralogist, 16: 501-520. Lemarchand, F., Viliemant, B., Calas, G., 1987. Trace Element Distribution Coefficients in Alkaline Series. Geochimica et Cosmochimica Acta, 51(5): 1071-1081. doi: 10.1016/0016-7037(87)90201-8 Li, S.T., Lu, F.X., Lin, C.S., et al., 1997. Evolution of Mesozoic and Cenozoic Basins in Eastern China and Their Geodynamic Background. China University of Geosciences Press, Wuhan (in Chinese). Lin, J.Q., Tan, D.J., Li, J.H., et al., 2000. Early Jurassic Banjing Intrusive Complex of Southern Marginal Zone of North China Block, Xuzhou. Journal of Changchun University of Science and Technology, 30(3): 209-214 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200003000.htm Liu, J.F., Xu, Y.G., 2006. Mineral Chemistry and Geochemistry of the Two Suites of Pyroxenite Xenoliths in Cenozoic Basalts from Yangyuan, Hebei. Geotectonica et Metallogenia, 30(1): 52-62 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK200601006&dbcode=CJFD&year=2006&dflag=pdfdown Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 Liu, Y.S., Gao, S., Lee, C.T., et al., 2005. Melt-Peridotite Interactions: Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust. Earth and Planetary Science Letters, 234(1-2): 39-57. doi: 10.1016/j.epsl.2005.02.034 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 Lu, S.M., 2012. Origin of the Late Mesozoic Alkaline Basalts and the Nature of the Lithospheric Mantle in the Liaoyuan Area, Jilin Province(Dissertation). Jilin University, Changchun (in Chinese with English abstract). Lu, S.M., Pei, F.P., Zhou, Q.J., et al., 2012. Origin of Late Mesozoic Alkaline Basalts and Nature of Lithospheric Mantle in Liaoyuan Area, Jilin Province. Earth Science—Journal of China University of Geosciences, 7(3): 475-488 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203011.htm Luo, Z.K., Miao, L.C., 2002. Granites and Gold Deposits in Zhaoyuan-Laizhou Area, Eastern Shandong Province. Metallurgical Industry Press, Beijing (in Chinese). Martin, H., Smithies, R.H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79: 1-24. doi: 10.1016/j.lithos.2004.04.048 Pearson, D.G., Davies, G.R., Nixon, P.H., 1993. Geochemical Constraints on the Petrogenesis of Diamond Facies Pyroxenites from the Beni Bousera Peridotite Massif, North Morocco. Journal of Petrology, 34: 1-48. doi: 10.1093/petrology/34.1.125 Pei, F.P., Xu, W.L., Wang, Q.H., et al., 2004. Mesozoic Basalt and Mineral Chemistry of the Mantle-Derived Xenocrysts in Feixian, Western Shandong, China: Constraints on Nature of Mesozoic Lithospheric Mantle. Geological Journal of China Universities, 10(1): 88-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200401007.htm Pouchou, J.L., Pichoir, F., 1984. A New Model for Quantitative X-Ray Microanalysis. Part 1: Application to the Analysis of Homogeneous Samples. Rech. Aerosp. , 3: 167-192. http://www.researchgate.net/publication/313098386_A_new_model_for_quantitative_x-ray_microanalysis_Part_I_application_to_the_analysis_of_homogeneous_samples Roeder, P.L., Emslie, R.F., 1970. Olivine-Liquid Equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289. doi: 10.1007/BF00371276 Suen, C.J., Frey, F.A., 1987. Origins of the Mafic and Ultramafic Rocks in the Ronda Peridotite. Earth and Planetary Science Letters, 85(1-3): 183-202. doi: 10.1016/0012-821X(87)90031-8 Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society Special Publications, Colorado, 2: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Suo, S.T., Zhong, Z.Q., Zhou, H.W., et al., 2012. Muti-Stage Tectonic Exhumation Processes of Ultrahigh-Pressure(UHP) Metamorphic Rocks in the Dabie-Sulu Area, East-Central China. Earth Science—Journal of China University of Geosciences, 37(1): 1-17 (in Chinese with English abstract). http://www.researchgate.net/publication/286168766_Multi-stage_tectonic_exhumation_processes_of_ultrahigh-pressure_UHP_metamorphic_rocks_in_the_Dabie-Sulu_area_east-central_China Thompson, R.N., Gibson, S.A., 2000. Transient High Temperatures in Mantle Plume Heads Inferred from Magnesian Olivines in Phanerozoic Picrites. Nature, 407: 502-506. doi: 10.1038/35035058 Wang, D.Y., Xu, W.L., Lan, X., et al., 2004. Petrogenesis of Pyroxenite Xenoliths in Mesozoic Gabbro-Diorite from Western Shandong Province, China. Journal of Jilin University (Earth Science Edition), 34(2): 167-173 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200402002.htm Wang, G.L., Jiang, B., Cao, D.Y., et al., 1998. On the Xuzhou-Suzhou Arcuate Duplex-Imbricate Fan Thrust System. Acta Geologica Sinica, 72(3): 228-236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199803003.htm Wang, Q.H., 2003. Petrology and Geochemistry in Xu-Huai Region, China: Constraints on Evolution of Mesozoic Lithospere in Eastern Part of the North China Block (Dissertation). Jilin University, Changchun (in Chinese with English abstract). Wang, Q.H., Xu, W.L., Pei, F.P., et al., 2009. Zr-in-Rutile Thermometry and Geochemical Characteristics of Trace Element in Rutile from Eclogite Inclusions of Mesozoic Intrusive Complexes in Xuzhou-Huainian Area, China. Acta Petrologica Sinica, 25(9): 2132-2140 (in Chinese with English abstract). http://www.scholarmate.com/scmwebsns/publication/view?des3Id=ARan82pt1aKqQi%252FwjA%252FcAw%253D%253D Wang, Q.H., Xu, W.L., Wang, D.Y., et al., 2004. Determination of the Magma Depth of Mesozoic Adakitic Rocks in Xuzhou-Suzhou Area: Evidence from P-T Estimation of Deep-Seated Xenoliths. Geological Review, 50(4): 351-359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200404002.htm Wang, Q.H., Xu, W.L., Yang, D.B., et al., 2011. Geochemical Characteristics for Trace Element of Mineral in Eclogite Inclusions Separated out of Mesozoic Intrusive Complex from Southeastern Margin of North China Block and Its Significances. Acta Petrologica Sinica, 27(4): 1131-1150 (in Chinese with English abstract). http://www.oalib.com/paper/1476605 Wang, W., 2008. The Evolution of Mesozoic and Cenozoic Lithospheric Mantle in Eastern North China Craton—Evidence from Igneous Rocks and Their Deep-Seated Xenoliths and Xenocrysts (Dissertation). Jilin University, Changchun (in Chinese). Xu, S.T., Chen, G.B., Tao, Z., 1993. Tectonic Framework and Setting of Xu-Huai District, Eastern China. Geological Publishing House, Beijing (in Chinese). Xu, W.L., Gao, S., Wang, Q.H., et al., 2006a. Mesozoic Crustal Thicking of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721-724, doi: 10.1130/G22551.1 Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2006b. Mesozoic Adakitic Rocks in the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(4): 454-464. doi: 10.1016/j.jseaes.2005.03.010 Xu, W.L., Gao, S., Yang, D.B., et al., 2009. Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications. Lithos, 107: 269-280. doi: 10.1016/j.lithos.2008.11.004 Xu, W.L., Hergt, J.M., Gao, S., et al., 2008. Interaction of Adakitic Melt-Peridotite: Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton. Earth and Planetary Science Letters, 265: 123-137. doi: 10.1016/j.epsl.2007.09.041 Xu, W.L., Wang, Q.H., Liu, X.C., et al., 2002. Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-Northern Anhui, Eastern China. Chinese Science Bulletin, 47(14): 1212-1216. doi: 10.1007/BF02907612 Xu, W.L., Wang, Q.H., Liu, X.C., et al., 2004a. Chronology and Sources of Mesozoic Intrusive Complex in Xu-Huai Region, Central China: Constraints from SHRIMP Zircon U-Pb Dating. Acta Geologica Sinica, 78(1): 96-106. doi: 10.1111/j.1755-6724.2004.tb00679.x Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2004b. Processes and Mechanism of Mesozoic Lithospheric Thinning in Eastern North China Craton: Evidence from Mesozoic Igneous Rocks and Deep-Seated Xenoliths. Earth Science Frontiers, 11(3): 309-317(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403040.htm Xu, W.L., Wang, Q.H., Liu, X.C., et al., 2005. SHRIMP Zircon U-Pb Dating in Jingshan "Migmatitic Granite", Bengbu and Its Geological Significance. Science in China (Series D), 48(2): 185-191. doi: 10.1360/03yd0045 Xu, W.L., Yang, D.B., Gao, S., et al., 2010. Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton: The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning. Chemical Geology, 270(1-4): 257-273. doi: 10.1016/j.chemgeo.2009.12.006 Xu, W.L., Yang, D.B., Pei, F.P., et al., 2009. Mesozoic Lithospheric Mantle Modified by Delaminated Lower Continental Crust in the North China Craton: Constraints from Compositions of Amphiboles from Peridotite Xenoliths. Journal of Jilin University (Earth Science Edition), 39(4): 606-617(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904003.htm Xu, W.L., Wang, D.Y., Zheng, C.Q., et al., 1999. The Discovery of Mantle- and Lower Crust-Derived Xenoliths in Mesozoic Trachybasalts from Western Liaoning, and Their Geological Implication. Geological Review, 45(Suppl. ): 444-449(in Chinese with English abstract). http://www.researchgate.net/publication/312985276_The_discovery_of_mantle-and_lower_crust-derived_xenoliths_in_mesozoic_trachybasalts_from_western_liaoning_and_their_geological_implications Xu, W.L., Zhou, Q.J., Pei, F.P., et al., 2013. Destruction of the North China Craton: Delamination or Thermal/Chemical Erosion? Mineral Chemistry and Oxygen Isotope Insights from Websterite Xenoliths. Gondwana Research, 23(1): 119-129. doi: 10.1016/j.gr.2012.02.008 Xu, W., Liu, X., Wang, Q., et al., 2004b. Garnet Exsolution in Garnet Clinopyroxenite and Clinopyroxenite Xenoliths in Early Cretaceous Intrusions from the Xuzhou Region, Eastern China. Mineralogical Magazine, 68(3): 455-465. doi: 10.1180/0026461046830198 Xu, Y.G., 2002. Evidence for the Crustal Components in the Mantle and Constraint on the Crustal Recycling Mechanism: Pyroxenite Xenoliths from Hannuoba, North China. Chemical Geology, 182: 301-322. doi: 10.1016/S0009-2541(01)00300-X Xu, Y.G., Huang, X.L., Menzies, M.A., et al., 2003. Highly Magnesian Olivines and Green-Core Clinopyroxenes in Ultrapotassic Lavas from Western Yunnan, China: Evidence for a Complex Hybrid Origin. European Journal of Mineralogy, 5: 965-975. doi: 10.1127/0935-1221/2003/0015-0965 Yang, D.B., Xu, W.L., Wang, Q.H., et al., 2010. Chronology and Geochemistry of Mesozoic Granitoids in the Bengbu Area, Central China: Constraints on the Tectonic Evolution of the Eastern North China Craton. Lithos, 114(1-2), 200-216. doi: 10.1016/j.lithos.2009.08.009 Yu, S.Y., Xu, Y.G., Ma, J.L., et al., 2010. Remnants of Oceanic Lower Crust in the Subcontinental Lithospheric Mantle: Trace Element and Sr-Nd-O Isotope Evidence from Aluminous Garnet Pyroxenite Xenoliths from Jiaohe, Northeast China. Earth and Planetary Science Letters, 297: 413-422. doi: 10.1016/j.epsl.2010.06.043 Yu, X.L., Zheng, J.P., 2007. Complex Pyroxenite Xenoliths in the Changle Cenozoic Basalts and Significance for the Lithospheric Evolution beneath the North China Craton. Geoscience, 21(2): 318-326 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702018.htm Zajacz, Z., Kovács, I., Szabo, C., et al., 2007. Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: A Melt Inclusion Study of Olivine-Clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 48(5): 853-883. doi: 10.1093/petrology/egm004 Zhang, H.F., Nakamura, E., Kobayashi, K., et al., 2010. Recycled Crustal Melt Injection into Lithospheric Mantle: Implication from Cumulative Composite and Pyroxenite Xenoliths. International Journal of Earth Sciences, 99: 1167-1186. doi: 10.1007/s00531-009-0467-8 Zhang, H.F., Sun, M., Zhou, X.H., et al., 2002. Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-element and Sr-Nd-Pb Isotopie Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144: 241-253. doi: 10.1007/500410-002-0395-0 Zhang, H.F., Ying, J.F., Xu P, et al., 2004. Mantle Olivine Xenocrysts Entrained in Mesozoic Basalts from the North China Craton: Implication for Replacement Process of Lithospheric Mantle. Chi. Sci. Bull. , 49(9): 961-966. doi: 10.1007/BF03184019 Zheng, J.P., Griffin, W.L., Qi, L., et al., 2009. Age and Composition of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts Reflect Paleogene Underplating beneath the North China Craton. Chemical Geology, 264: 266-280. doi: 10.1016/j.chemgeo.2009.03.011 Zhou, X.H., Sun, M., Zhang, G.H., et al., 2002. Continental Crust and Lithospheric Mantle Interaction beneath North China: Isotopic Evidence from Granulite Xenoliths in Hannuoba, Sino-Korean Craton. Lithos, 62: 111-124. doi: 10.1016/S0024-4937(02)00110-X Zhu, G., Hu, Z.Q., Chen, Y., et al., 2008. Evolution of Early Cretaceous Extensional Basins in the Eastern North China Craton and Its Implication for the Craton Destruction. Geological Bulletin of China, 27(10): 1594-1604(in Chinese with English abstract). Zinngrebe, E., Foley, S.F., 1995. Metasomatism in Mantle Xenoliths from Gees, West Eifel, Germany: Evidence for the Genesis of Calcalkaline Glasses and Metasomatism Ca-Enrichment. Contributions to Mineralogy and Petrology, 122(1-2): 79-96. doi: 10.1007/s004100050114 Zajacz, Z., Kovács, I., Szabó, C., et al., 2007. Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: A Melt Inclusion Study of Olivine-clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 48(5): 853-883. doi: 10.1093/petrology/egm004 陈立辉, 2001. 山东莱芜中生代高镁侵入岩及其超镁铁质岩捕虏体的成因研究(博士学位论文). 北京: 中国科学院. 李思田, 路凤香, 林畅松, 等, 1997. 中国东部及邻区中、新生代盆地演化及地球动力学背景. 武汉: 中国地质大学出版社. 林景仟, 谭东娟, 厉建华, 等, 2000. 华北陆块南缘带早侏罗世徐州班井侵入杂岩体. 长春科技大学学报, 30(3): 209-214. doi: 10.3969/j.issn.1671-5888.2000.03.001 刘讲锋, 徐义刚, 2006. 河北阳原新生代玄武岩中两类辉石岩包体的矿物学和地球化学特征. 大地构造与成矿学, 30(1): 52-62. doi: 10.3969/j.issn.1001-1552.2006.01.007 路思明, 2012. 吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质(硕士学位论文). 长春: 吉林大学. 路思明, 裴福萍, 周群君, 等, 2012. 吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质. 地球科学——中国地质大学学报, 37(3): 475-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203011.htm 罗振宽, 苗来成, 2002. 胶东招莱地区花岗岩和金矿床. 北京: 冶金工业出版社. 裴福萍, 许文良, 王清海, 等, 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学: 对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. doi: 10.3969/j.issn.1006-7493.2004.01.008 索书田, 钟增球, 周汉文, 等. 2012. 大别-苏鲁区超高压(UHP)变质岩的多阶段构造折返过程. 地球科学——中国地质大学学报, 37(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201003.htm 王冬艳, 许文良, 兰翔, 等, 2004. 鲁西中生代辉长闪长岩中辉石岩捕虏体的岩石成因. 吉林大学(地球科学版), 34(2): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402002.htm 王桂梁, 姜波, 曹代勇, 等, 1998. 徐淮-宿州弧形双冲-叠瓦扇逆冲断层系统. 地质学报, 72(3): 228-236. doi: 10.3321/j.issn:0001-5717.1998.03.004 王清海, 2003. 徐淮地区中生代侵入杂岩及深源捕虏体的岩石学和地球化学: 对华北地块东部中生代岩石圈演化的制约(博士学位论文). 长春: 吉林大学. 王清海, 许文良, 裴福萍, 等, 2009. 金红石中锆含量温度计及其微量元素地球化学特征-来自徐淮地区中生代侵入杂岩中榴辉岩类包体的信息. 岩石学报, 25(9): 2132-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909007.htm 王清海, 许文良, 王冬艳, 等, 2004. 徐州-宿州地区中生代埃达克质岩石岩浆起源深度的限定深源捕虏体温度-压力条件证据. 地质论评, 50(4): 351-359. doi: 10.3321/j.issn:0371-5736.2004.04.003 王清海, 许文良, 杨德彬, 等, 2011. 华北地块东南缘中生代侵入杂岩中所含榴辉岩类包体矿物微量元素地球化学特征及其意义. 岩石学报, 27(4): 1131-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104022.htm 王微, 2008. 华北克拉通东部中新生代岩石圈演化——来自火成岩与深源捕虏体(晶)证据(博士学位论文). 长春: 吉林大学. 徐树桐, 陈冠宝, 陶正, 1993. 中国东部徐-淮地区地质构造格局及其形成背景. 北京: 地质出版社. 许文良, 王冬艳, 郑常青, 等, 1999. 辽西阜新中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义. 地质论评, 45(增刊): 444-449. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1061.htm 许文良, 王清海, 王冬艳, 等, 2004b. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 11(3): 309-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403040.htm 许文良, 杨德彬, 裴福萍, 等, 2009. 华北克拉通中生代拆沉陆壳物质对岩石圈地幔的改造: 来自橄榄岩捕虏体中角闪石的成分制约. 吉林大学学报(地球科学版), 39(4): 606-617. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904003.htm 余晓露, 郑建平, 2007. 复杂的山东昌乐新生代玄武岩辉石岩岩捕虏体及其岩石圈演化意义. 现代地质, 21(2): 318-326. doi: 10.3969/j.issn.1000-8527.2007.02.017 朱光, 胡召齐, 陈印, 等, 2008. 华北克拉通东部早白垩世伸展盆地的发育过程及其对克拉通破坏的指示. 地质通报, 27(10): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810003.htm