Origination of Limestone-Marl Alternations from Qixia Formation of South China
-
摘要: 华南中二叠统栖霞组沉积了一套特殊的碳酸盐岩地层, 该套地层富含有机质和硅质结核, 是中国南方四套区域性海相烃源岩之一.在野外露头上, 灰岩-泥灰岩韵律层因为其抗风化能力不同而受到广泛关注, 其在整个华南栖霞组分布广泛.其中, 灰岩层富含各种生物碎屑, 主要包括钙藻、有孔虫和腹足, 其次还有腕足, 棘皮类和介形虫, 偶尔见苔藓虫和三叶虫.灰岩层中较好的保存了易碎的钙质藻类, 说明灰岩的胶结作用发生在成岩早期, 没有明显压实作用的痕迹.泥灰岩以粒泥生物碎屑灰岩和黑色钙质泥岩为主, 主要的生物碎屑以腕足和介形虫为主.生物碎屑都非常破碎, 壳体大都平行层面, 颗粒之间发育大量压溶缝, 说明泥灰岩层经历过强烈的成岩压实作用.基于对灰岩-泥灰岩韵律层的生屑类型和成岩现象的分析, 提出差异成岩作用来解释该套地层的形成过程: 泥灰岩层中不稳定的文石在早期成岩过程中溶蚀, 然后迁移到灰岩层中形成方解石胶结灰岩层; 随后机械压实作用和化学压实作用主要发生在泥灰岩层中; 最终灰岩-泥灰岩层由于差异成岩作用导致其抗风化能力不同而形成不同的露头特征.其中文石溶蚀发生在海水埋藏环境, 有机质的分解为其提供了动力来源, 这与栖霞期较高的原始生产力相符合.Abstract: The Middle Permian of South China is a unique carbonate succession, which is rich in organic matter and chert nodule, and is one set of the most important marine source rocks. Limestone-marl alternations are widely distributed in this area. The limestones are rich in skeletal detritus, dominated by algae, foraminifera, and mollusks with subordinate amounts of brachiopods, echinoderms, and ostracods, and minor bryozoans and trilobites. Fragile skeletons such as calcareous algae were well preserved, indicating that cementation took place during early diagenesis with little diagenetic compaction. Marls are bioclastic wackestone or dark mudstone. Bioclasts are diverse, including remnants of brachiopods, ostracods and rare trilobites. Bioclastic flakes are oriented parallel to bedding planes, and thin-shelled fragments, e.g., ostracods, are broken due to compaction of the unlithified sediment. Between the particles are micrite and a large number of dissolution seams. As to the particular features of the limestone-marl alternations, it is inferred that differential diagenesis occurred between limestones and marls. Aragonite in marl layers was dissolved to cement limestone, which took place in shallow-burial realm. Mechanical compaction and then pressure dissolution were concentrated in the less cemented strata. The dissolution of aragonite in the shallow marine burial realm is thought to have been initiated by modification of the pore-water chemistry by bacterial oxidation of organic matter.
-
Key words:
- limestone-marl alternations /
- aragonite /
- calcite /
- sedimentary rocks /
- Qixia Formation /
- South China
-
图 5 灰岩-泥灰岩韵律层的形成过程(据Westphal et al., 2000)
Fig. 5. The formation process of limestone-marl alternations
表 1 广元上寺剖面灰岩-泥灰岩韵律层生屑颗粒含量
Table 1. The content of bioclastic grains of limestone-marl alternations from Shangsi section
标本号 岩性 低镁方解石 文石 高镁方解石 介形虫 腕足 有孔虫 软体动物 钙藻(%) 棘皮动物 Pgy-R-51-1′ L 10 3 0 0 0 0 Pgy-R-51-1 M 50 20 0 0 5 0 Pgy-R-54-1 L 15 6 0 5 35 5 Pgy-R-54-1′ M 150 30 10 0 3 0 Pgy-R-54-2 L 35 10 50 10 3 0 Pgy-R-54-2′ M 100 50 15 0 3 0 Pgy-R-54-3′ L 80 15 30 0 3 0 Pgy-R-54-3 M 250 20 15 5 1 3 Pgy-R-55-3 L 35 5 40 10 7 3 Pgy-R-55-3′ M 100 20 10 0 7 5 Pgy-R-60-2 L 30 20 3 0 0 0 Pgy-R-60-2′ M 125 40 11 0 0 0 Pgy-R-61-1 L 50 23 8 0 3 0 Pgy-R-61-1′ M 100 30 90 0 0 0 Pgy-R-62-2 L 10 15 0 0 1 0 Pgy-R-62-2′ M 100 40 28 0 0 0 Pgy-R-65-1 L 25 40 0 0 1 1 Pgy-R-65-1′ M 60 35 0 0 0 0 Pgy-R-70-1 L 20 5 12 0 0 0 Pgy-R-70-1′ M 15 15 6 0 0 0 Pgy-R-70-3 L 60 30 3 0 0 0 Pgy-R-70-3′ M 20 15 0 0 0 0 注:L代表灰岩;M代表泥灰岩. 表 2 二叠纪海水主要离子浓度(mol/kg H2O)
Table 2. The main ion concentration of Permian seawater
年龄(Ma) Na+ K+ Ca2+ Mg2+ Cl- SO42- Mg2+/Ca2+ 0 485 11 11 55 565 29 5.2 258~251 469 10 14 52 565 23 3.7 283~274 439 10 17 60 565 19 3.5 296~283 461 10 15 52 565 20 3.5 245 478 13 14 47 565 25 3.5 255 477 15 15 43 565 23 2.8 265 477 15 15 43 565 23 2.8 275 481 12 12 52 565 27 4.3 285 476 16 17 40 565 21 2.4 296~251 460 11 20 54 550 20~45 2.7 注:据Hardie, 1996; Horita et al., 1991 ;Lowenstein et al., 2005 . -
Bao, H.Y., Ma, Z.W., Hu, C.Y., et al., 2009. Productivity of Limestone-Marl Rhythms of Permain Chihsia Formation in Wuhan. Geological Science and Technology Information, 28(2): 60-65(in Chinese with English abstract). Bathurst, R.G.C., 1987. Diagenetically Enhanced Bedding in Argillaceous Platform Limestones: Stratified Cementation and Selective Compaction. Sedimentology, 34(5): 749-778. doi: 10.1111/j.1365-3091.1987.tb00801.x Chen, H., Xie, X.N., Li, H.J., et al., 2010. Evaluation of the Permian Marine Hydrocarbon Source Rocks at Shangsi Section in Sichuan Province Using Multi-proxies of Paleoproductivity and Paleoredox. Journal of Palaeogeography, 12(3): 324-333(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201003011.htm Dickson, J.A.D., 2002. Fossil Echinoderms as Monitor of the Mg/Ca Ratio of Phanerozoic Oceans. Science, 298(5596): 1222-1224. doi: 10.1126/science.1075882 Du, Y.L., Li, S.Y., Jia, Z.H., et al., 2012. Re-discussion on the Origin of the Rudstone in Middle Permian Qixia Formation along Lower Yangtze River of Anhui Province. Geological Review, 58(3): 426-433(in Chinese with English abstract). Feng, Z.Z., Yan, Y.Q., Jin, Z.K., et al., 1996. Lithofacies Paleogeography of the Permian of South China. Acta Sedimentologica Sinica, 14(2): 1-11(in Chinese with English abstract). Folk, R.L., 1974. The Natural History of Crystalline Calcium Carbonate: Effect of Magnesium Content and Salinity. Journal of Sedimentary Research, 44(1): 40-53. doi: 10.1306/74D72973-2B21-11D7-8648000102C1865D Hardie, L.A., 1996. Secular Variation in Seawater Chemistry: An Explanation for the Coupled Secular Variation in the Mineralogies of Marine Limestones and Potash Evaporites over the Past 600 M. y. Geology, 24(3): 279-283. doi:10.1130/0091-7613(1996)024<0279:Svisca>2.3.Co;2 Horita, J., Friedman, T.J., Lazar, B., et al., 1991. The Composition of Permian Seawater. Geochimica et Cosmochimica Acta, 55(2): 417-432. doi: 10.1016/0016-7037(91)90001-L Jin, Z.K., Feng, Z.Z., 1994. The Origin of the Permian Nodular Limestones in Yunnan-Guizhou Region. Acta Petrologica et Mineralogica, 13(2): 133-137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW402.004.htm Li, S.Y., Meng, Q.R., Wan, Q., et al., 2008. Deposition of Carbonate Slope and Ore-Forming in Permian Strata in the Middle-Lower Reaches of the Yangtze River, East China. Acta Petrologica Sinica, 24(8): 1733-1744(in Chinese with English abstract). Liang, D.G., Guo, T.L., Bian, L.Z., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. Marine Origin Petroleum Geology, 14(2): 1-19(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200902003.htm Liu, X.T., Yan, J.X., 2009. A Review of Influences of Seawater Chemical Evolution on Biomineralization. Journal of Palaeogeography, 11(4): 446-454(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GDLX200904011.htm Liu, X.T., Yan, J.X., Xue, W.Q., 2011. Differential Diagenesis of Limestone-Marl Alternations. Geological Review, 58(4): 627-635(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201204003.htm Liu, X.Y., Yan, J.X., 2007. Nodular Chert of the Permian Chihsia Formation from South China and Its Geological Implications. Acta Sedimentologica Sinica, 25(5): 730-736(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200705010.htm Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., et al., 2001. Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions. Science, 294(5544): 1086-1088. doi: 10.1126/science.1064280 Lowenstein, T.K., Timofeeff, M.N., Kovalevych, V.M., et al., 2005. The Major-Ion Composition of Permian Seawater. Geochimica et Cosmochimica Acta, 69(7): 1701-1719. doi: 10.1016/j.gca.2004.09.015 Luo, J.X., He, Y.B., 2010. Origin and Characteristics of Permian Eyeball-Shaped Limestones in Middle-Upper Yangtze Region. Geological Review, 56(5): 629-637(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201005005.htm Ma, Z.X., Li, B., Yan, J.X., et al., 2011. Microfacies of Peloidal Limestone of Middle Permian Chihsia Formation at Guangyuan, Sichuan Province and Its Sedimentary Significance. Acta Sedimentologica Sinica, 29(3): 449-457(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201103006.htm Milliman, J.D., Freile, D., Steinen, R.P., et al., 1993. Great Bahama Bank Aragonitic Muds, Mostly Inorganically Precipitated, Mostly Exported. Journal of Sedimentary Research, 63(4): 589-595. doi: 10.1306/D4267B81-2B26-11D7-8648000102C1865D Munnecke, A., Westphal, H., Kolbl-Ebert, M., 2008. Diagenesis of Plattenkalk: Examples from the Solnhofen Area (Upper Jurassic, Southern Germany). Sedimentology, 55(6): 1931-1946. doi: 10.1111/j.1365-3091.2008.00975.x Munnecke, A., Westphal, H., Reijmer, J.J.G., et al., 1997. Microspar Development during Early Marine Burial Diagenesis: A Comparison of Pliocene Carbonates from the Bahamas with Silurian Limestones from Gotland (Sweden). Sedimentology, 44(6): 977-990. doi: 10.1111/j.1365-3091.1997.tb02173.x Murchey, B.L., Jones, D.L., 1992. A Mid-Permian Chert Event: Widespread Deposition of Biogenic Siliceous Sediments in Coastal, Island Arc and Oceanic Basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 96(1-2): 161-174. doi: 10.1016/0031-0182(92)90066-E Ricken, W., 1987. The Carbonate Compaction Law: A New Tool. Sedimentology, 34(4): 571-584. doi: 10.1111/j.1365-3091.1987.tb00787.x Ries, J.B., 2010. Review: Geological and Experimental Evidence for Secular Variation in Seawater Mg/Ca (Calcite-Aragonite Seas) and Its Effects on Marine Biological Calcification. Biogeosciences, 7(9): 2795-2849. doi: 10.5194/bg-7-2795-2010 Ries, J.B., Anderson, M.A., Hill, R.T., 2008. Seawater Mg/Ca Controls Polymorph Mineralogy of Microbial CaCO3: A Potential Proxy for Calcite-Aragonite Seas in Precambrian Time. Geobiology, 6(2): 106-119. doi: 10.1111/j.1472-4669.2007.00134.x Sandberg, P.A., 1983. An Oscillating Trend in Phanerozoic Non-Skeletal Carbonate Mineralogy. Nature, 305(5929): 19-22. doi: 10.1038/305019a0 Sanders, D., 2003. Syndepositional Dissolution of Calcium Carbonate in Neritic Carbonate Environments: Geological Recognition, Processes, Potential Significance. Journal of African Earth Sciences, 36(3): 99-134. doi: 10.1016/S0899-5362(03)00027-7 Stanley, S.M., 2008. Effects of Global Seawater Chemistry on Biomineralization: Past, Present, and Future. Chemical Reviews, 108(11): 4483-4498. doi: 10.1021/cr800233u Stanley, S.M., Hardie, L.A., 1998. Secular Oscillations in the Carbonate Mineralogy of Reef-Building and Sediment-Producing Organisms Driven by Tectonically Forced Shifts in Seawater Chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1): 3-19. doi: 10.1016/S0031-0182(98)00109-6 Wang, C.S., Li, X.H., Chen, H.D., et al., 1999. Permian Sea-Level Changes and Rising-Falling Events in South China. Acta Sedimentologica Sinica, 17(4): 536-541(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199904004.htm Westphal, H., 2006. Limestone-Marl Alternations as Environmental Archives and the Role of Early Diagenesis: A Critical Review. International Journal of Earth Sciences, 95(6): 947-961. doi: 10.1007/s00531-006-0084-8 Westphal, H., Head, M.J., Munnecke, A., 2000. Differential Diagenesis of Rhythmic Limestone Alternations Supported by Palynological Evidence. Journal of Sedimentary Research, 70(3): 715-725. doi: 10.1306/2DC40932-0E47-11D7-8643000102C1865D Westphal, H., Hilgen, F., Munnecke, A., 2010. An Assessment of the Suitability of Individual Rhythmic Carbonate Successions for Astrochronological Application. Earth-Science Reviews, 99(1): 19-30. doi: 10.1016/j.earscirev.2010.02.001 Westphal, H., Munnecke, A., 1997. Mechanical Compaction versus Early Cementation in Fine-Grained Limestones: Differentiation by the Preservation of Organic Microfossils. Sedimentary Geology, 112(1-2): 33-42. doi: 10.1016/S0037-0738(97)00033-X Wheeley, J.R., Cherns, L., Wright, P., 2008. Provenance of Microcrystalline Carbonate Cement in Limestone-Marl Alternations (LMA): Aragonite Mud or Molluscs? Journal of the Geological Society, 165: 395-403. doi: 10.1144/0016-76492006-160 Yan, J.X., 2004. Origin of Permian Chihsian Carbonates from South China and Its Geological Implications. Acta Sedimentologica Sinica, 22(4): 579-587(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200404004.htm Yan, J.X., Munnecke, A., Steuber, T., et al., 2005. Marine Sepiolite in Middle Permian Carbonates of South China: Implications for Secular Variation of Phanerozoic Seawater Chemistry. Journal of Sedimentary Research, 75(3): 328-338. doi: 10.2110/Jsr.2005.026 Yan, J.X., Wu, M., 2006. Synchronized Osciliations in Phanerozoic Chemical Composition of Seawater, Carbonate Sedimentation and Biotic Evolution: Progresses and Prospects. Geological Science and Technology Information, 25(3): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200603000.htm Yang, Y.Q., Feng, Z.Z., 2000. Permian Depositional Systems in South China. Journal of Palaeogeography, 2(1): 11-18(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GDLX200001001&dbcode=CJFD&year=2000&dflag=pdfdown Yin, H.F., Xie, S.C., Yan, J.X., et al., 2011. Geobiological Approach to Evaluating Marine Carbonate Source Rocks of Hydrocarbon. Sci. China: Earth Sci. , 54(8): 1121-1135. doi: 10.1007/s11430-011-4236-8 Zhuravlev, A.Y., Wood, R.A., 2009. Controls on Carbonate Skeletal Mineralogy: Global CO2 Evolution and Mass Extinctions. Geology, 37(12): 1123-1126. doi: 10.1130/G30204A.1 包汉勇, 马仲武, 胡超涌, 等, 2009. 武汉地区二叠系栖霞组灰岩-含泥灰岩韵律层生物产率. 地质科技情报, 28(2): 60-65. doi: 10.3969/j.issn.1000-7849.2009.02.011 陈慧, 解习农, 李红敬, 等, 2010. 利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩. 古地理学报, 12(3): 324-333. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201003011.htm 杜叶龙, 李双应, 贾志海, 等, 2012. 再论安徽沿江地区中二叠统栖霞组砾屑灰岩的成因. 地质论评, 58(3): 426-433. doi: 10.3969/j.issn.0371-5736.2012.03.003 冯增昭, 杨玉卿, 金振奎, 等, 1996. 中国南方二叠纪岩相古地理. 沉积学报, 14(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB602.000.htm 金振奎, 冯增昭, 1994. 云贵地区二叠系瘤石灰岩的成因. 岩石矿物学杂志, 13(2): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW402.004.htm 李双应, 孟庆任, 万秋, 等, 2008. 长江中下游地区二叠纪碳酸盐斜坡沉积及其成矿意义. 岩石学报, 24(8): 1733-1744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808007.htm 梁狄刚, 郭彤楼, 边立曾, 等, 2009. 中国南方海相生烃成藏研究的若干新进展(三) : 南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001 刘喜停, 颜佳新, 2009. 海水化学演化对生物矿化的影响综述. 古地理学报, 11(4): 446-454. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200904011.htm 刘喜停, 颜佳新, 薛武强, 2012. 灰岩-泥灰岩韵律层的差异成岩作用. 地质论评, 58(4): 627-635. doi: 10.3969/j.issn.0371-5736.2012.04.003 刘新宇, 颜佳新, 2007. 华南地区二叠纪栖霞组燧石结核成因研究及其地质意义. 沉积学报, 25(5): 730-736. doi: 10.3969/j.issn.1000-0550.2007.05.011 罗进雄, 何幼斌, 2010. 中-上扬子地区二叠系眼球状石灰岩特征及成因研究. 地质论评, 56(5): 629-637. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201005005.htm 马志鑫, 李波, 颜佳新, 等, 2011. 四川广元中二叠统栖霞组似球粒灰岩微相特征及沉积学意义. 沉积学报, 29(3): 449-457. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201103006.htm 王成善, 李祥辉, 陈洪德, 等, 1999. 中国南方二叠纪海平面变化及升降事件. 沉积学报, 17(4): 536-541. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904004.htm 颜佳新, 2004. 华南地区二叠纪栖霞组碳酸盐岩成因研究及其地质意义. 沉积学报, 22(4): 579-587. doi: 10.3969/j.issn.1000-0550.2004.04.005 颜佳新, 伍明, 2006. 显生宙海水成分, 碳酸盐沉积和生物演化系统研究进展. 地质科技情报, 25(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200603000.htm 杨玉卿, 冯增昭, 2000. 中国南方二叠纪沉积体系. 古地理学报, 2(1): 11-18. doi: 10.3969/j.issn.1671-1505.2000.01.002