Substructural Transformation of Birnessite and Formation of Todorokite in Simulated Surface Environment
-
摘要: 水钠锰矿是土壤与沉积物中最为常见的氧化锰矿物, 依据其MnO6层对称特点分为六方和三斜两种亚结构类型.六方水钠锰矿在表生环境中可通过Mn2+的化学或生物氧化形成, 而环境中三斜水钠锰矿的形成及进一步转化为钙锰矿的途径尚不清楚.以两种六方水钠锰矿(酸性水钠锰矿和水羟锰矿)为前驱物, 采用X射线吸收光谱(EXAFS)、X射线衍射(XRD)、电镜(FESEM/TEM)及化学组成分析等技术方法模拟表生环境研究了水钠锰矿从六方向三斜的亚结构转化及生成钙锰矿的化学条件和矿物学机制.结果表明, 适当Mn(Ⅱ)浓度和弱碱性条件(pH≥8)可使六方水钠锰矿逐渐转化为三斜水钠锰矿, 继而经Mg2+交换、常压回流得到了长纤维状的钙锰矿, 其晶体生长以溶解-结晶为主.Mn(Ⅱ)与六方水钠锰矿MnO6八面体层内的Mn(Ⅳ)反应生成Mn(Ⅲ)并填充层内空位, 使水钠锰矿对称型由六方向三斜转变.与酸性水钠锰矿相比, 水羟锰矿结晶弱、层状堆积混乱度高, 与Mn(Ⅱ)反应迅速, 层结构向三斜水钠锰矿转化快.pH升高, 促进六方水钠锰矿对Mn(Ⅱ)的吸附和Mn(Ⅱ)与Mn(Ⅳ)间的反应, 六方水钠锰矿转化为三斜水钠锰矿的速率加快."六方水钠锰矿→三斜水钠锰矿"可能是环境中三斜水钠锰矿的重要来源, 及进一步形成钙锰矿的重要化学生成机制.Abstract: Birnessite, one of the most common Mn oxide minerals in soils and sediments, has two types of substructures, hexagonal and triclinic, on the basis of the MnO6 layer symmetrical features. In the surface environment, hexagonal birnessite is formed through the chemical or biological oxidation of Mn2+, but the formation pathway of triclinic birnessite and further transformation into todorokite are still not clear. In the simulated surface environment, the chemical conditions and mineralogy mechanism of hexagonal birnessite (acid birnessite and vernadite) transformation to triclinic birnessite, and then into todorokite were investigated by EXAFS, XRD, FESEM/TEM and chemical composition analyses. The results show that hexagonal birnessite can be converted into triclinic birnessite under appropriate Mn(Ⅱ) concentration and weak alkaline conditions (pH≥8), and triclinic birnessite can be further converted into todorokite which consists of long fibers after Mg2+ exchanged and refluxed under the atmospheric pressure. Long fibers of todorokite form mainly through a dissolution-recrystallization process. Reaction of aqueous Mn(Ⅱ) with Mn(Ⅳ) in the hexagonal birnessite MnO6 octahedral layers causes transformation of hexagonal birnessite into triclinic birnessite via filling of yielded Mn(Ⅲ) into vacancy sites in the layers. Compared with acid birnessite, the transformation of vernadite into triclinic birnessite was much easier due to weak crystallization and turbostratic structure of vernadite. Higher pH facilitates adsorption of Mn(Ⅱ) and reaction of Mn(Ⅱ) with Mn(Ⅳ), thus speeds up the transformation of hexagonal birnessite into triclinic birnessite. Therefore, one of the important sources of triclinic birnessite in nature can be denoted as: hexagonal birnessite → triclinic birnessite, which may be one of the important chemical formation mechanisms of todorokite in the surface environment.
-
Key words:
- birnessite /
- hexagonal birnessite /
- triclinic birnessite /
- todorokite /
- transformation /
- environmental geology
-
表 1 酸性水钠锰矿和在16 mM Mn2+、pH 13条件下不同转化阶段产物的理化性质分析
Table 1. Physicochemical properties of acid birnessite and its products treated with 16 mM Mn2+ at pH 13 under different times
样品 平均化学组成 Mn AOS SSA(m2/g) HB Na0.253MnO2.052·nH2O 3.85 33.78 转化1 d Na0.308MnO1.959·nH2O 3.61 20.55 转化6 d Na0.318MnO1.989·nH2O 3.66 21.15 转化20 d Na0.292MnO1.986·nH2O 3.68 20.95 -
Bargar, J.R., Fuller, C.C., Marcus, M.A., et al., 2009. Structural Characterization of Terrestrial Microbial Mn Oxides from Pinal Creek, AZ. Geochimica et Cosmochimica Acta, 73: 889-910. doi: 10.1016/j.gca.2008.10.036 Bish, D.L., Post, J.E., 1989. Thermal Behavior of Complex, Tunnel-Structure Manganese Oxides. American Mineralogist, 74: 177-186. http://www.researchgate.net/publication/236552007_Thermal_behavior_of_complex_tunnel-structure_manganese_oxides Bodeï, S., Manceau, A., Geoffroy, N., et al., 2007. Formation of Todorokite from Vernadite in Ni-Rich Hemipelagic Sediments. Geochimica et Cosmochimica Acta, 71: 5698-5716. doi: 10.1016/j.gca.2007.07.020 Buatier, M.D., Guillaume, D., Wheat, C.G., et al., 2004. Mineralogical Characterization and Genesis of Hydrothermal Mn Oxides from the Flank of the Juan, the Fuca Ridge. American Mineralogist, 89: 1807-1815. doi: 10.2138/am-2004-11-1227 Cai, J., Liu, J., Suib, S.L., 2002. Preparative Parameters and Framework Dopant Effects in the Synthesis of Layer-Structure Birnessite by Air Oxidation. Chemistry of Materials, 14: 2071-2077. doi: 10.1021/cm010771h Chukhrov, F.V., Drits, V.A., Gorshkov, A.I., et al., 1987. Structural Models of Vernadite. International Geology Review, 29: 1337-1347. doi: 10.1080/00206818709466228 Drits, V.A., Silvester, E., Gorshkov, A.I., et al., 1997. Structure of Synthetic Monoclinic Na-Rich Birnessite and Hexagonal Birnessite: I. Results from X-Ray Diffraction and Selected-Area Electron Diffraction. American Mineralogist, 82: 946-961. doi: 10.2138/am-1997-9-1012 Drits, V.A., Lanson, B., Gaillot, A.C., 2007. Birnessite Polytype Systematics and Identification by Powder X-Ray Diffraction. American Mineralogist, 92: 771-788. doi: 10.2138/am.2007.2207 Fendorf, S.E., Sparks, D.L., Franz, J.A., et al., 1993. Electron Paramagnetic Resonance Stopped-Flow Kinetic Study of Manganese (Ⅱ) Sorption-Desorption on Birnessite. Soil Science Society of America Journal, 57: 57-62. doi: 10.2136/sssaj1993.03615995005700010011x Feng, X.H., Liu, F., Tan, W.F., et al., 2004a. Synthesis of Todorokite by Refluxing Process and Its Primary Characteristics. Science in China(Ser. D), 47: 760-768. doi: 10.1360/03yd0511 Feng, X.H., Tan, W.F., Liu, F., et al., 2004b. Synthesis of Todorokite at Atmospheric Pressure. Chemistry of Materials, 16: 4330-4336. doi: 10.1021/cm0499545 Feng, X.H., Tan, W.F., Liu, F., et al., 2005. Hydrothermal Synthesis of Todorokite and Its Influencing Factors. Earth Science—Journal of China University of Geosciences, 30(3): 347-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200503011.htm Feng, X.H., Zhu, M.Q., Ginder-Vogel, M., et al., 2010. Formation of Nano-Crystalline Todorokite from Biogenic Mn Oxides. Geochimica et Cosmochimica Acta, 74: 3232-3245. doi: 10.1016/j.gca.2010.03.005 Giovanoli, R., 1980. Vernadite is Random-Stacked Birnessite. Mineralium Deposita, 15: 251-253. Golden, D.C., Chen, C.C., Dixon, J.B., 1987. Transformation of Birnessite to Buserite, Todorokite and Manganite under Mild Hydrothermal Treatment. Clays and Clay Minerals, 35: 271-280. doi: 10.1346/CCMN.1987.0350404 Grangeon, S., Lanson, B., Miyata, N., et al., 2010. Structure of Nanocrystalline Phyllomanganates Produced by Freshwater Fungi. American Mineralogist, 95: 1608-1616. doi: 10.2138/am.2010.3516 Jiang, X.J., Yao, D., Lin, X.H., 2009. Role of Sodium Ion on Stability of the Crystal Structure of Marine 10 Å Manganates. Earth Science —Journal of China University of Geosciences, 34(3): 392-398 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.043 Kijima, N., Yasuda, H., Sato, T., et al., 2001. Preparation and Characterization of Open Tunnel Oxide α-MnO2 Precipitated by Ozone Oxidation. Journal of Solid State Chemistry, 159(1): 94-102. doi: 10.1006/jssc.2001.9136 Lanson, B., Drits, V.A., Silvester, E., et al., 2000. Structure of H-Exchanged Hexagonal Birnessite and Its Mechanism of Formation from Na-Rich Monoclinic Buserite at Low pH. American Mineralogist, 85: 826-838. doi: 10.2138/am-2000-5-625 McKenzie, R.M., 1971. The Synthesis of Birnessite, Cryptomelane and Some Other Oxides and Hydroxides of Manganese. Mineralogical Magazine, 38: 493-502. doi: 10.1180/minmag.1971.038.296.12 McKenzie, R.M., 1989. Manganese Oxides and Hydroxides. In: Dixon, J.B., Weed, S.B., eds., Minerals in Soil Environments (2nd Edition). Soil Science Society of America, Madison, Wisconsin, 439-465. Post, J.E., 1999. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proceeding of the National Academy of Sciences of the United of America, 96: 3447-3454. doi: 10.1073/pnas.96.7.3447 Potter, R.M., Rossman, G.R., 1979. The Tetravalent Manganese Oxides: Identification, Hydration, and Structural Relationships by Infrared Spectroscopy. American Mineralogist, 64: 1199-1218. http://ammin.geoscienceworld.org/content/64/11-12/1199 Qian, J.C., 1998. Study on Structural Stability of 1 nm Manganates. Acta Oceanologica Sinica, 20(3): 56-63 (in Chinese with English abstract). Saratovsky, I., Gurr, S.J., Hayward, M.A., 2009. The Structure of Manganese Oxide Formed by the Fungus Acremonium sp. Strain KR21-2. Geochimica et Cosmochimica Acta, 73: 3291-3300. doi: 10.1016/j.gca.2009.03.005 Shen, Y.F., Zerger, R.P., Suib, S.L., et al., 1993. Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization and Application. Science, 260: 511-515. doi: 10.1126/science.260.5107.511 Takematsu, N., Khaben, H., Saton, Y., et al., 1988. Todorokite Formation in Seawater by Microbial Mediation. Journal of the Oceanographic Society of Japan, 44: 235-243. doi: 10.1007/BF02303427 Tan, W.F., Liu, F., Li, Y.H., et al., 2000. Methodological Study of Identifying Manganese Minerals in Fe-Mn Nodules of Soils. Acta Mineralogica Sinica, 20(1): 63-67 (in Chinese with English abstract). Tebo, B.M., Bargar, J.R., Clement, B.G., et al., 2004. Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Annual Review of Earth and Planetary Sciences, 32: 287-328. doi: 10.1146/annurev.earth.32.101802.120213 Toyoda, K., Tebo, B.M., 2013. The Effect of Ca2+ Ions and Ionic Strength on Mn(Ⅱ) Oxidation by Spores of the Marine Bacillus sp. SG-1. Geochimica et Cosmochimica Acta, 101: 1-11. doi: 10.1016/j.gca.2012.10.008 Tu, S.H., Racz, G.J., Goh, T.B., 1994. Transformations of Synthetic Birnessite as Affected by pH and Manganese Concentration. Clays and Clay Minerals, 42(3): 321-330. doi: 10.1346/CCMN.1994.0420310 Villalobos, M., Lanson, B., Manceau, A., et al., 2006. Structural Model for the Biogenic Mn Oxide Produced by Pseudomonas Putida. American Mineralogist, 91: 489-502. doi: 10.2138/am.2006.1925 Villalobos, M., Toner, B., Bargar, J., et al., 2003. Characterization of the Mn Oxide Produced by Pseudomonas Putida Strain MnB1. Geochimica et Cosmochimica Acta, 67: 2649-2662. doi: 10.1016/S0016-7037(03)00217-5 Wadsley, A.D., 1950. Synthesis of Some Hydrated Manganese Minerals. American Mineralogist, 35: 485-488. Webb, S.M., Dick, G.J., Bargar, J.R., et al., 2005a. Evidence for the Presence of Mn(Ⅲ) Intermediates in the Bacterial Oxidation of Mn(Ⅱ). Proceeding of the National Academy of Sciences of the United of America, 102: 5558-5563. doi: 10.1073/pnas.0409119102 Webb, S.M., Tebo, B.M., Bargar, J.R., 2005b. Structural Characterization of Biogenic Mn Oxides Produced in Seawater by the Marine Bacillus sp. Strain SG-1. American Mineralogist, 90: 1342-1357. doi: 10.2138/am.2005.1669 Yang, D.S., Wang, M.K., 2002. Syntheses and Characterization of Birnessite by Oxidizing Pyrochroite in Alkaline Conditions. Clays and Clay Minerals, 50: 63-69. doi: 10.1346/000986002761002685 Yin, H., Tan, W.F., Zheng, L.R., et al., 2012. Characterization of Ni-Rich Hexagonal Birnessite and Its Geochemical Effects on Aqueous Pb2+/Zn2+ and As(Ⅲ). Geochimica et Cosmochimica Acta, 93: 47-62. doi. org/10.1016/j. gca. 2012.05.039 doi: 10.1016/j.gca.2012.05.039 Zhu, M.Q., Matthew, G.V., Sanjai, J.P., et al., 2010. Cation Effects on the Layer Structure of Biogenic Mn-Oxides. Environmental Science Technology, 44: 4465-4471. doi: 10.1021/es1009955 冯雄汉, 谭文峰, 刘凡, 等, 2005. 热液条件下钙锰矿的合成及其影响因素. 地球科学——中国地质大学学报, 30(3): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503011.htm 姜学钧, 姚德, 林学辉, 2009. 钠离子对于海洋成因10 Å水锰矿结构稳定性的影响. 地球科学——中国地质大学学报, 34(3): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903001.htm 钱江初, 1998.1 nm锰矿相结构稳定性的研究. 海洋学报, 20(3): 56-63. doi: 10.3321/j.issn:0253-4193.1998.03.009 谭文峰, 刘凡, 李永华, 等, 2000. 土壤铁锰结核中锰矿物类型鉴定的探讨. 矿物学报, 20(1): 63-67. doi: 10.3321/j.issn:1000-4734.2000.01.012