• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩体结构面产状测量的钻孔摄像技术及其可靠性

    曹洋兵 晏鄂川 胡德新 季惠彬

    曹洋兵, 晏鄂川, 胡德新, 季惠彬, 2014. 岩体结构面产状测量的钻孔摄像技术及其可靠性. 地球科学, 39(4): 473-480. doi: 10.3799/dqkx.2014.045
    引用本文: 曹洋兵, 晏鄂川, 胡德新, 季惠彬, 2014. 岩体结构面产状测量的钻孔摄像技术及其可靠性. 地球科学, 39(4): 473-480. doi: 10.3799/dqkx.2014.045
    Cao Yangbing, Yan Echuan, Hu Dexin, Ji Huibin, 2014. Calculation Methods of Rock Mass Discontinuity Orientation Measured by Borehole Camera Technology and Technology Reliability. Earth Science, 39(4): 473-480. doi: 10.3799/dqkx.2014.045
    Citation: Cao Yangbing, Yan Echuan, Hu Dexin, Ji Huibin, 2014. Calculation Methods of Rock Mass Discontinuity Orientation Measured by Borehole Camera Technology and Technology Reliability. Earth Science, 39(4): 473-480. doi: 10.3799/dqkx.2014.045

    岩体结构面产状测量的钻孔摄像技术及其可靠性

    doi: 10.3799/dqkx.2014.045
    基金项目: 

    国家自然科学基金资助项目 41172282

    国家重点基础研究发展计划“973”项目 2011CB710605

    北京市科学技术委员会重点资助项目 20090102-2796

    详细信息
      作者简介:

      曹洋兵(1987-),男,博士研究生,主要从事岩体稳定性评价与防治方面的研究.E-mail:cybing1140504@163.com

      通讯作者:

      晏鄂川(1969-),E-mail:yecyec6970@163.com

    • 中图分类号: P642

    Calculation Methods of Rock Mass Discontinuity Orientation Measured by Borehole Camera Technology and Technology Reliability

    • 摘要: 针对钻孔摄像技术对结构面产状测量只限于垂直孔的现状,以钻孔孔口圆心为原点,建立空间左手直角坐标系,对倾斜孔中结构面产状的确定方法进行了详尽的阐述和推导,得出了精确的解析计算公式,并基于C#语言进行编程,开发了IDOIB软件,通过测试表明此方法及其程序的正确性.采用PVC管模拟钻孔孔壁,进行钻孔摄像技术用于结构面产状测量的可靠性试验研究,结果表明:(1)对于垂直孔,测量结果的倾向绝对误差为[-3°,4°]、倾角绝对误差为[-1.5°,1.0°],说明该技术用于垂直孔进行结构面产状测量是可靠的,能满足工程应用精度.(2)当PVC管的倾伏向为270°、倾伏角为25°时,结构面产状可靠度为0.10;倾伏向为176°、倾伏角为60°时,结构面产状可靠度为0.67.PVC管倾伏角的不同导致结构面产状可靠度的差异.(3)一般岩体工程的结构面产状测量结果应具有高等级可靠度(不小于0.8),即须在倾伏角不小于71°的钻孔内采用该技术进行测量.

       

    • 图  1  孔壁影像二维展开截面

      Fig.  1.  Two dimension unfolded section of hole wall image

      图  2  孔壁任意点A空间坐标的计算模型

      Fig.  2.  Space coordinate calculation model of any point A in borehole wall

      图  3  x'Oy'坐标系及A"点平面位置

      Fig.  3.  x'Oy' coordinate system and plane position of A" point

      图  4  IDOIB软件界面

      Fig.  4.  Interface of IDOIB software

      图  5  垂直孔产状可靠性试验模型

      Fig.  5.  Reliability test model of discontinuity orientation in vertical hole

      图  6  结构面影像选点示意

      Fig.  6.  Sketch map of choice of discontinuity image point

      图  7  钻孔倾伏角与结构面产状可靠度关系

      Fig.  7.  Relationship between plunge of borehole and reliability of discontinuity orientation

      表  1  PVC管垂直时的真实产状和影像产状对比

      Table  1.   Contrast of authentic orientation and image orientation in vertical PVC pipe

      编号 倾向(°) 倾角(°)
      真实值 影像值 绝对误差 真实值 影像值 绝对误差
      1 270 274 4 34.2 34.0 -0.2
      2 20 17 -3 36.6 35.1 -1.5
      3 135 137 2 55.5 56.0 0.5
      4 180 182 2 53.7 54.2 0.5
      5 225 228 3 44.2 45.1 0.9
      6 78 77 -1 25.6 25.1 -0.5
      7 165 166 1 34.4 35.4 1.0
      8 314 316 2 45.3 46.0 0.7
      9 128 130 2 39.8 40.0 0.2
      下载: 导出CSV

      表  2  倾伏向270°、倾伏角25°时的结构面产状结果对比

      Table  2.   Contrast of discontinuity orientation while PVC pipe with trend of 270° and plunge of 25°

      编号 倾向(°) 倾角(°)
      真实值 影像值 绝对误差 真实值 影像值 绝对误差
      1 270 284 14 78 74 -4
      2 150 141 -9 80 75 -5
      3 135 129 -6 38 40 2
      4 148 137 -11 75 84 9
      5 143 141 -2 69 78 9
      6 160 145 -15 73 59 -14
      7 108 100 -8 65 62 -3
      8 290 303 13 75 69 -6
      9 123 127 4 29 25 -4
      10 104 99 -5 32 42 10
      11 75 87 12 60 57 -3
      12 122 136 14 48 53 5
      13 280 291 11 87 79 -8
      下载: 导出CSV

      表  3  倾伏向176°、倾伏角60°时的结构面产状结果对比

      Table  3.   Contrast of discontinuity orientation while PVC pipe with trend of 176° and plunge of 60°

      编号 倾向(°) 倾角(°)
      真实值 影像值 绝对误差 真实值 影像值 绝对误差
      1 327 323 -4 61 58 -3
      2 51 45 -6 58 60 2
      3 64 62 -2 19 22 3
      4 44 49 5 52 54 2
      5 42 44 2 47 45 -2
      6 52 48 -4 64 63 -1
      7 339 344 5 35 33 -2
      8 181 180 -1 72 73 1
      9 117 120 3 13 17 4
      10 221 223 2 8 6 -2
      11 294 291 -3 38 37 -1
      12 342 340 -2 18 21 3
      13 342 337 -5 61 60 -1
      下载: 导出CSV
    • [1] Cunningham, J.K., 2004. Application of Ground-Penetrating Radar, Digital Optical Borehole Images, and Cores for Characterization of Porosity Hydraulic Conductivity and Paleokarst in Biscayne Aquifer, Southeastern Florida, USA. Journal of Applied Geophysics, 55(1-2): 61-76. doi: 10.1016/j.jappgeo.2003.06.005
      [2] Cunningham, J.K., Carlson, J.I., Hurley, N.F., 2004. New Method for Quantification of Vuggy Porosity from Digital Optical Borehole Images as Applied to the Karstic Pleistocene Limestone of the Biscayne Acquifer, Southeastern Florida. Journal of Applied Geophysics, 55(1-2): 77-90. doi: 10.1016/j.jappgeo.2003.06.006
      [3] Ge, X.R., Wang, C.Y., 2001. Digital Panoramic Borehole Camera Technique and Digital Borehole. Underground Space, 21(4): 254-261 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxkj200104002
      [4] Hamm, S.Y., Kim, M.S., Cheong, J.Y., et al., 2007. Relationship between Hydraulic Conductivity and Fracture Properties Estimated from Packer Tests and Borehole Data in a Fractured Granite. Engineering Geology, 92(1-2): 73-87. doi: 10.1016/j.enggeo.2007.03.010
      [5] Kanaori, Y., 1983. The Observation of Crack Development around an Underground Rock Chamber by Borehole Television System. Rock Mechanics and Rock Engineering, 16(2): 133-142. doi: 10.1007/BF01032795
      [6] Kong, G.S., 2005. The Application of Borehole Acoustic Televiewer Logging Results to the Classification of Rock Weathering Degrees. Geophysical & Geochemical Exploration, 29(4): 367-368, 373 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-WTYH200504022.htm
      [7] Liang, H.W., Wu, S.H., Mu, L.X., et al., 2013. Base Level Cyclic Controls on the Fluvial Reservoir Physical Properties and Sonic Logging Response. Earth Science—Journal of China University of Geosciences, 38(5): 1135-1142 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.113
      [8] Lo, H.C., Chou, P.Y., Hsu, S.M., et al., 2012. Using Borehole Prospecting Technologies to Determine the Correlation between Fracture Properties and Hydraulic Conductivity: A Case Study in Taiwan. Journal of Environmental and Engineering Geophysics, 17(1): 27-37. doi: 10.2113/JEEG17.1.27
      [9] Luo, M., Pan, H.P., Zhao, Y.G., et al., 2008. Natural Radioactivity Logs and Interpretation from the CCSD Main Hole. Earth Science—Journal of China University of Geosciences, 33(5): 661-671 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.081
      [10] Ma, F., Chen, G., Hu, C., et al., 2011. Change of Permeability Tensors in Fractured Rock Mass Based on Intelligent Drillhole Optical Imager. Chinese Journal of Geotechnical Engineering, 33(3): 496-500 (in Chinese with English abstract). http://www.cqvip.com/QK/95758X/201103/37014720.html
      [11] Mao, J.Z., 1994. Ultrasonic Imaging Borehole TV and Its Application to Rock Engineering. Chinese Journal of Rock Mechanics and Engineering, 13(3): 247-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX403.006.htm
      [12] Mao, J.Z., Chen, Q.C., Wang, C.H., 2008. Application of Acoustic Borehole Televiewer to Measurement of In-Situ Stress. Chinese Journal of Geotechnical Engineering, 30(1): 46-50 (in Chinese with English abstract). http://www.researchgate.net/publication/289046975_Application_of_acoustic_borehole_televiewer_to_measurement_of_in-situ_stress
      [13] Wang, C.Y., Hu, P.L., Sun, W.C., 2010. Method for Evaluating Rock Mass Integrity Based on Borehole Camera Technology. Rock and Soil Mechanics, 31(4): 1326-1330 (in Chinese with English abstract). http://www.researchgate.net/publication/288617719_Method_for_evaluating_rock_mass_integrity_based_on_borehole_camera_technology
      [14] Wang, C.Y., Law, K.T., 2005. Review of Borehole Camera Technology. Chinese Journal of Rock Mechanics and Engineering, 24(19): 3440-3448 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200519005.htm
      [15] Wang, C.Y., Zhong, S., Sun, W.C., 2009. Study of Connectivity of Discontinuities of Borehole Based on Digital Borehole Images. Chinese Journal of Rock Mechanics and Engineering, 28(12): 2405-2410 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yslxygcxb200912004
      [16] Williams, J.H., Johnson, C.D., 2004. Acoustic and Optical Borehole-Wall Imaging for Fractured-Rock Aquifer Studies. Journal of Applied Geophysics, 55(1-2): 151-159. doi: 10.1016/j.jappgeo.2003.06.009
      [17] Wu, J., Feng, S.K., Li, H.J., 2011. Study of Automatically Extracting Structural Plane Parameters from Borehole Images. Rock and Soil Mechanics, 32(3): 951-957 (in Chinese with English abstract). http://www.researchgate.net/publication/286361474_Study_of_automatically_extracting_structural_plane_parameters_from_borehole_images
      [18] Yang, J., Yan, E.C., Ji, H.B., et al., 2011. Digital Drillhole Images Based Identification of Discontinuity Classification and Development in Deep Rocks. Journal of Engineering Geology, 19(3): 332-337 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/gcdzxb201103006
      [19] Zhou, K.P., Gao, F., Hu, J.H., et al., 2007. Monitoring and Analysis of Fracture Development in Pre-Splitting Hole of Cave Inducement of Roof. Chinese Journal of Rock Mechanics and Engineering, 26(5): 1034-1040 (in Chinese with English abstract). http://www.oalib.com/paper/1485089
      [20] 葛修润, 王川婴, 2001. 数字式全景钻孔摄像技术与数字钻孔. 地下空间, 21(4): 254-261. doi: 10.3969/j.issn.1673-0836.2001.04.002
      [21] 孔广胜, 2005. 利用钻孔超声成像的图像特征进行岩石风化程度分类. 物探与化探, 29(4): 367-368, 373. doi: 10.3969/j.issn.1000-8918.2005.04.023
      [22] 梁宏伟, 吴胜和, 穆龙新, 等, 2013. 基准面旋回对河流相储层物性差异及声波测井影响. 地球科学——中国地质大学学报, 38(5): 1135-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305027.htm
      [23] 骆淼, 潘和平, 赵永刚, 等, 2008. 中国大陆科学钻探主孔自然放射性测井及其解释. 地球科学——中国地质大学学报, 33(5): 661-671. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805012.htm
      [24] 马峰, 陈刚, 胡成, 等, 2011. 利用钻孔成像研究基岩地区的渗透张量变化规律. 岩土工程学报, 33(3): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103033.htm
      [25] 毛吉震, 1994. 超声波成象钻孔电视及其在岩石工程中的应用. 岩石力学与工程学报, 13(3): 247-260. doi: 10.3321/j.issn:1000-6915.1994.03.006
      [26] 毛吉震, 陈群策, 王成虎, 2008. 超声波钻孔电视在地应力测量研究中的应用. 岩土工程学报, 30(1): 46-50. doi: 10.3321/j.issn:1000-4548.2008.01.006
      [27] 王川婴, 胡培良, 孙卫春, 2010. 基于钻孔摄像技术的岩体完整性评价方法. 岩土力学, 31(4): 1326-1330. doi: 10.3969/j.issn.1000-7598.2010.04.055
      [28] 王川婴, Law, K.T., 2005. 钻孔摄像技术的发展与现状. 岩石力学与工程学报, 24(19): 3440-3448. doi: 10.3321/j.issn:1000-6915.2005.19.006
      [29] 王川婴, 钟声, 孙卫春, 2009. 基于数字钻孔图像的结构面连通性研究. 岩石力学与工程学报, 28(12): 2405-2410. doi: 10.3321/j.issn:1000-6915.2009.12.004
      [30] 吴剑, 冯少孔, 李宏阶, 2011. 钻孔成像中结构面自动判读技术研究. 岩土力学, 32(3): 951-957. doi: 10.3969/j.issn.1000-7598.2011.03.051
      [31] 杨举, 晏鄂川, 季惠彬, 等, 2011. 基于数字钻孔影像的深部结构面类型识别及发育特征研究. 工程地质学报, 19(3): 332-337. doi: 10.3969/j.issn.1004-9665.2011.03.006
      [32] 周科平, 高峰, 胡建华, 等, 2007. 顶板诱导崩落预裂钻孔裂隙发育监测与分析. 岩石力学与工程学报, 26(5): 1034-1040. doi: 10.3321/j.issn:1000-6915.2007.05.024
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  3213
    • HTML全文浏览量:  181
    • PDF下载量:  567
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-06-19
    • 刊出日期:  2014-04-15

    目录

      /

      返回文章
      返回