• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    微咸水膜下滴灌对土壤和棉花元素组成及产量的影响

    黄金瓯 靳孟贵 栗现文

    黄金瓯, 靳孟贵, 栗现文, 2014. 微咸水膜下滴灌对土壤和棉花元素组成及产量的影响. 地球科学, 39(6): 751-759. doi: 10.3799/dqkx.2014.070
    引用本文: 黄金瓯, 靳孟贵, 栗现文, 2014. 微咸水膜下滴灌对土壤和棉花元素组成及产量的影响. 地球科学, 39(6): 751-759. doi: 10.3799/dqkx.2014.070
    Huang Jin'ou, Jin Menggui, Li Xianwen, 2014. Influence of Mulched Drip-Irrigation with Brackish Water on Element Composition of Soil, Cotton, and Cotton Yield. Earth Science, 39(6): 751-759. doi: 10.3799/dqkx.2014.070
    Citation: Huang Jin'ou, Jin Menggui, Li Xianwen, 2014. Influence of Mulched Drip-Irrigation with Brackish Water on Element Composition of Soil, Cotton, and Cotton Yield. Earth Science, 39(6): 751-759. doi: 10.3799/dqkx.2014.070

    微咸水膜下滴灌对土壤和棉花元素组成及产量的影响

    doi: 10.3799/dqkx.2014.070
    基金项目: 

    国家自然科学基金项目 41172218

    详细信息
      作者简介:

      黄金瓯(1989-),男,博士研究生,研究方向为水文地质与生态环境以及水流与溶质运移.E-mail: hjo2012@163.com

      通讯作者:

      靳孟贵,E-mail: mgjin@cug.edu.cn

    • 中图分类号: P595, S151.9

    Influence of Mulched Drip-Irrigation with Brackish Water on Element Composition of Soil, Cotton, and Cotton Yield

    • 摘要: 通过微咸水和淡水膜下滴灌对比试验,研究灌溉水质对土壤和棉花元素组成及产量的影响.结果表明:微咸水灌溉处理,土壤窄行和膜间微量元素(尤其是铜、铁、锌)含量明显高于宽行,Na+增长率低于宽行;多数棉花器官中钾钠比、钙钠比并未因灌溉水质的区别而产生显著差异;微咸水滴灌有利于促进棉花前期营养生长及后期生殖生长,棉花干物质、单铃重、单位面积铃数及籽棉产量均高于淡水处理;棉株内锰、硼与钙元素间存在显著的相关关系,在一定阈值内,硼、锰促进棉花对钙的吸收.试验证明:微咸水中含有一定量的微量元素,合理利用微咸水灌溉,不会对棉花生长造成胁迫,相反能有效抑制土壤中Na+增长,增强棉花对盐分胁迫的抵抗能力、提高棉花产量.

       

    • 图  1  田间棉花种植及滴灌带布局

      Fig.  1.  Sketch of cottons and pipes for drip irrigation

      图  2  咸、淡水膜下滴灌土壤剖面钠元素增长率

      Fig.  2.  Growth rate of sodium in soil profile under mulched drip irrigation with brackish and fresh water

      图  3  咸、淡水膜下滴灌6种元素在土壤剖面的分布

      Fig.  3.  Distribution of six elements in soil profile under mulched drip irrigation with brackish and fresh water

      图  4  咸、淡水膜下滴灌条件下棉花干物质累积

      Fig.  4.  Accumulation of cotton dry matter under mulched drip irrigation with brackish and fresh water

      图  5  棉株内锰、硼与钙元素的相关关系拟合曲线

      a.硼、钙相关关系拟合曲线;b.锰、钙相关关系拟合曲线.1.根、铃、絮(Ca>10 000×10-6);2.茎、蕾(Ca:10 000×10-6~20 000×10-6);3.蕾期叶片(Ca:20 000×10-6~30 000×10-6);4.絮期叶片(Ca:30 000×10-6~40 000×10-6)

      Fig.  5.  Matched curve of correlations among manganese, boron and calcium in cotton

      表  1  2012年巴州灌溉试验站灌溉用水中主要元素和离子含量

      Table  1.   Elements and anions in irrigation water of Bazhou Irrigation Experimental Station in 2012

      元素及离子 淡水 微咸水
      Cu 6.1±0.2 8.0±0.3
      Zn 84.4±4.3 127.3±4.2
      Fe 449.7±29 690.6±23.1
      Mn 21.6±1.9 27.1±1.5
      B 92.9±12.5 293.7±20.5**
      Na 67.86±11.20 401.37±7.43**
      K 7.12±1.11 23.38±0.43**
      Ca 51.57±3.24 145.01±3.98**
      Mg 24.06±1.84 100.67±3.98**
      HCO3- 196.08±3.16 368.07±2.81**
      NO3- 16.37±1.36 47.14±2.25**
      Cl- 55.18±7.09 443.20±10.61**
      SO42- 132.75±13.57 704.70±15.15**
      注:Cu、Fe、Mn、Zn、B含量的单位为μg/L,其余为mg/L;表内各项指标为平均值±标准差;*表示0.05水平上,2种处理差异显著;**表示0.01水平上,2种处理差异极显著;表 24~7同理.
      下载: 导出CSV

      表  2  供试土壤中各元素背景值(10-6)

      Table  2.   Background value of different elements in tested soil (10-6)

      处理 深度(cm) Cu Fe Mn Zn B Ca Mg Na 有效钾 有效磷 有效氮
      微咸水 0~10 0.88±0.06 102±0.8 58.9±3.2 1.58±0.24 1.56±0.09 21 023±1113 587±7 169±69 47.9±5.9 11.3±3.8 23.3±2.2
      10~20 0.93±0.03 101±2.9 57.1±1.6 1.12±0.03 1.80±0.06 19 622±687 569±14 143±41 47.0±1.2 20.4±5.4 22.1±3.2
      20~30 0.94±0.04 100±4.3 58.8±1.6 1.00±0.08 1.92±0.21 20 371±1097 557±9 123±10 55.6±8.1 14.0±3.5 26.0±3.5
      30~40 0.75±0.03 87±2.8 55.0±2.2 0.87±0.11 1.40±0.13 21 124±607 447±8 108±5 50.8±4.6 5.5±3.3 18.3±2.0
      40~50 0.81±0.13 83±5.1 58.8±4.0 0.96±0.34 1.55±0.29 18 244±1686 600±40 151±24 56.5±6.4 4.3±2.3 15.4±1.6
      50~60 0.87±0.06 96±2.9 64.2±5.6 0.72±0.20 1.83±0.17 24 892±961 756±9 231±67 53.1±3.6 3.4±0.8 12.5±0.8
      淡水 0~10 0.91±0.07 101±6.3 57.8±4.6 1.52±0.33 1.70±0.38 20 662±1690 610±35 156±47 50.6±2.1 12.0±4.7 24.5±2.1
      10~20 0.96±0.17 102±6.9 59.3±3.3 1.09±0.23 1.78±0.43 20 332±953 587±43 135±30 46.0±3.7 19.7±4.1 23.2±2.8
      20~30 0.99±0.16 97±6.8 56.3±4.1 1.02±0.16 2.07±0.70 19 232±1987 563±33 127±22 54.2±1.5 13.2±6.7 25.0±1.4
      30~40 0.73±0.02 85±5.4 58.0±6.9 0.94±0.27 1.33±0.12 21 884±1450 470±84 104±27 52.8±4.6 5.9±7.3 17.5±4.1
      40~50 0.79±0.11 88±8.8 62.8±9.0 1.04±0.17 1.51±0.27 19 650±3896 637±47 156±44 53.6±10.1 4.1±2.5 14.8±1.3
      50~60 0.83±0.26 91±15.3 62.1±4.9 0.75±0.48 1.97±0.02 25 050±3322 762±66 214±3 55.5±6.9 3.5±0.2 13.3±3.6
      下载: 导出CSV

      表  3  2012年田间灌水、施肥方案

      Table  3.   Scheme of irrigation and fertilization in 2012

      生育期 蕾期 花期 铃期 吐絮初期 合计
      灌水次数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
      灌水日期(月/日) 6/25 6/30 7/5 7/10 7/15 7/20 7/25 7/30 8/4 8/9 8/14 8/19 8/24 8/29 9/3
      灌水份额(%) 4.3 7.1 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 5.7 5.7 2.9 2.9 2.9 100.0
      灌水量(mm) 22.499 37.498 44.998 44.998 44.998 44.998 44.998 44.998 44.998 44.998 29.999 29.999 14.999 14.999 14.999 524.970
      施氮量(kg/hm2) 14.4 19.2 52.8 60.0 60.0 60.0 266.4
      下载: 导出CSV

      表  4  不同生育期棉株钾钠比、钙钠比

      Table  4.   The ratio of K+/Na+ and Ca2+/Na+ in cotton at different growth stages

      生育期 器官 K+/Na+ Ca2+/Na+
      微咸水 淡水 微咸水 淡水
      蕾期 16.33±1.44 13.35±1.97 3.16±1.36 2.22±0.54
      14.36±0.12* 8.14±1.11 5.87±1.82 3.79±1.47
      9.69±1.81 5.45±1.27 16.02±1.43** 9.12±0.74
      86.64±3.36** 39.28±2.78 81.83±2.28** 51.35±1.71
      絮期 5.32±1.93 5.10±0.13 1.64±0.45 1.48±0.23
      4.94±1.04* 6.31±0.54 2.16±0.76 2.41±0.09
      3.80±1.52 4.39±0.04 5.06±0.69** 8.22±1.34
      48.41±6.19 46.57±9.66 13.10±4.98 10.65±1.85
      25.22±8.83* 37.71±6.65 5.75±0.79** 7.73±0.31
      下载: 导出CSV

      表  5  咸、淡水膜下滴灌条件下棉花根冠比

      Table  5.   Root/shoot ratios under mulched drip irrigation with brackish and fresh water

      播种后天数(d) 处理 棉花不同器官干物质(g)
      地下部干物质重(g) 地上部干物质重(g) 根冠比
      59 微咸水 1.03±0.78 1.61±0.35 1.64±0.52 0.27±0.03 1.03±0.78 3.51±1.17 29.2±5.1%
      淡水 1.23±0.72 2.04±0.3 1.64±0.47 0.34±0.04 1.23±0.72 4.02±1.23 30.5±6.3%
      66 微咸水 2.37±0.63 5.84±1.83 6.33±1.98 0.95±0.35* 1.27±0.44* 2.37±0.63 14.39±4.25 16.5±1.4%
      淡水 1.58±0.58 3.61±0.46 4.81±0.48 0.45±0.13 0.31±0.02 1.58±0.58 9.17±1.11 17.2±1.2%
      71 微咸水 2.24±0.35* 7.33±0.14* 8.08±0.74 2.81±0.51* 0.16±0.03* 2.24±0.35* 18.37±1.37* 12.2±1.5%
      淡水 1.65±0.48 4.74±1.28 6.29±1.74 1.89±0.35 0.27±0.01 1.65±0.48 13.18±1.38 12.5±3.6%
      81 微咸水 3.62±0.11** 10.56±1.82 9.02±1.68* 2.32±0.52* 0.30±0.02* 9.18±0.05** 3.62±0.11** 31.38±5.01* 11.5±1.5%
      淡水 2.33±0.15 8.32±0.31 7.19±0.54 1.43±0.39 0.48±0.05 2.25±0.01 2.33±0.15 19.66±0.04 11.9±1.7%
      116 微咸水 6.54±0.81* 16.62±2.87 16.16±2.81 27.17±2.11* 6.54±0.81* 59.95±3.04* 10.9±0.9%*
      淡水 3.28±0.69 13.39±0.87 10.83±3.23 21.38±2.94 3.28±0.69 45.59±3.16 7.2±0.6%
      137 微咸水 6.47±1.98 14.45±2.41 17.47±0.85* 29.89±8.74 25.61±7.72 6.47±1.98 87.42±3.94* 7.4±1.4%
      淡水 4.04±0.42 9.32±2.96 8.53±1.85 22.23±8.18 19.71±5.41 4.04±0.42 59.79±6.97 6.8%±1.9%
      下载: 导出CSV

      表  6  咸、淡水膜下滴灌条件下棉株产量

      Table  6.   Cotton yields under mulched drip irrigation with brackish and fresh water

      处理 单铃重(g) 单位面积铃数(个/3.3 m2) 籽棉产量(kg/hm2)
      微咸水 6.014±0.534 397.8±48.5** 7 177.05±883.96**
      淡水 5.833±0.428 318.3±42.6 5 569.95±754.32
      下载: 导出CSV

      表  7  咸、淡水膜下滴灌棉花内元素组成(吐絮期)

      Table  7.   Elements composition in cotton under mulched drip irrigation with brackish and fresh water (boll opening stage)

      处理 器官 Cu Fe Mn Zn B Ca Mg Na K
      微咸水 5.6±0.8 70.2±3.0 5.6±0.2** 9.0±1.1* 11.1±0.2 2 793±18** 1 437±3** 1 709±8** 9 099±50**
      7.4±0.1** 213.9±8.2* 11.0±0.8 23.2±9.2 32.4±0.2** 21 418±234** 10 840±313** 9 960±40** 49 145±467**
      4.4±1.0 374.6±5.4 27.5±4.2 16.3±1.1 39.0±1.5* 33 841±138** 7 710±30** 6 707±100** 25 470±466**
      3.3±0.6** 89.7±1.4* 8.3±0.5 14.5±1.2 15.5±1.7 3 741±223** 2 119±11 283±13 13 829±286
      2.6±0.1** 109.1±2.4** 8.5±0.6** 15.5±1.2* 10.6±0.4** 1 545±16** 1 407±18** 264±4** 6 763±23**
      淡水 3.0±1.1 73.8±8.4 3.6±0.2 10.5±0.7 11.0±1.3 2 390±46 1204±12 1 614±18 8 221±45
      6.4±0.2 239.9±3.4 10.3±2.1 27.5±5.9 23.2±0.6 22 808±194 12 622±384 9 472±28 59 798±550
      4.8±0.1 384.0±45.4 29.1±1.8 17.9±1.5 43.3±1.6 35 825±465 7 857±27 4 368±15 19 177±786
      4.4±0.9 70.4±8.7 7.4±0.6 12.0±1.4 13.7±0.3 3084±21 2 071±51 291±6 13 506±316
      2.2±0.1 59.8±0.5 6.8±0.2 11.9±1.2 5.7±0.1 1254±29 1 023±144 163±4 6 111±76
      注:元素单位为10-6.
      下载: 导出CSV

      表  8  棉株内9种元素间相关性分析(n=54)

      Table  8.   Correlations of 9 elements in cotton

      元素 Cu Fe Mn Zn B Ca Mg Na K
      Cu 1.000
      Fe 0.294* 1.000
      Mn 0.407** 0.576** 1.000
      Zn 0.35** 0.617** 0.529** 1.000
      B 0.349** 0.579** 0.648** 0.267 1.000
      Ca 0.35** 0.38** 0.704** 0.295* 0.715** 1.000
      Mg 0.458** 0.220 0.53** 0.246 0.534** 0.794** 1.000
      Na 0.068 0.136 -0.012 -0.082 0.260 0.493** 0.607** 1.000
      K 0.080 0.177 -0.030 0.133 0.162 0.382** 0.587** 0.782** 1.000
      下载: 导出CSV
    • Abdulnour, J.E., Donnelly, D.J., Barthakur, N.N., 2000. The Effect of Boron on Calcium Uptake and Growth in Micropropagated Potato Plantlets. Potato Research, 43(3): 287-295. doi: 10.1007/BF02358088
      Abo-Kassem, E., Sharafeldin, A., Rozema, J., et al., 1995. Synergistic Effects of Cadmium and NaCl on the Growth, Photosynthesis and Ion Content in Wheat Plants. Biologia Plantarum, 37(2): 241-249. doi: 10.1007/BF02913220
      Al-Karaki, G., 2000. Growth, Water Use Efficiency and Sodium and Potassium Acquisition by Tomato Cultivars Grown under Salt Stress. Journal of Plant Nutrition, 23: 1-8. doi: 10.1080/01904160009381992
      Bastias, E., Fernandez-Garcia, N., Carvajal, M., 2004. Aquaporin Functionality in Roots of Zea Mays in Relation to the Interactive Effects of Boron and Salinity. Plant Biology, 6(4): 415-421. doi: 10.1055/s-2004-820889
      Chen, D.M., Yu, R.P., 1996. Studies on Relative Salt Tolerance of Crops Ⅱ. Salt Tolerance of Some Main Crop Species. Acta Pedologica Sinica, 33(2): 121-128 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/289638
      Chen, J.S., Deng, B.S., Tao, S., et al., 1990. Environmental Geochemistry. China Ocean Press, Beijing, 140 (in Chinese).
      Dasgan, H., Aktas, H., Abak, K., et al., 2002. Determination of Screening Techniques to Salinity Tolerance in Tomatoes and Investigation of Genotype Responses. Plant Science, 163(4): 695-703. doi: 10.1016/S0168-9452(02)00091-2
      Dogan, I., Ozyigit, I.I., Demir, G., 2012. Mineral Element Distribution of Cotton (Gossypium Hirsutum L. ) Seedlings under Different Salinity Levels. Pakistan Journal of Botany, 44(1): 15-20. http://www.researchgate.net/publication/259477828_MINERAL_ELEMENT_DISTRIBUTION_OF_COTTON_GOSSYPIUM_HIRSUTUM_L_SEEDLINGS_UNDER_DIFFERENT_SALINITY_LEVELS
      Dong, H.Z., 2010. Cotton Farming in Saline Soil. Science Press, Beijing, 77 (in Chinese).
      Gouia, H., Ghorbal, M.H., Touraine, B., 1994. Effects of NaCl on Flows of N and Mineral Ions and on NO3- Reduction Rate within Whole Plants of Salt-Sensitive Bean and Salt-Tolerant Cotton. Plant Physiology, 105(4): 1409-1418. doi: 10.1104/pp.105.4.1409
      Guo, W.Q., Bian, S.G., Zhang, P.T., et al., 2012. Analysis of Yield and Yield Formation Features of High-Yielding Cotton Cultivars Planted in Coastal Saline-Alkali Soil in Jiangsu Province. Acta Agriculturae Jiangxi, 24(9): 15-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8581.2012.09.004
      He, Y.J., Wang, B.G., Wang, Z.M., et al., 2010. Study on Irrigation Scheduling of Cotton under Mulch Drip Irrigation with Brackish Water. Transactions of the CSAE, 26(7): 14-20 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-6819.2010.07.003
      Jin, M.G., Zhang, R.Q., Gao, Y.F., et al., 1998. Sustainable Irrigation with Brackish Groundwater in Heilonggang Region, China. Journal of China University of Geosciences, 9(1): 90-94. http://d.wanfangdata.com.cn/Periodical_dqkx-e199801011.aspx
      Keyser, H.H., Munns, D.N., 1979. Effects of Calcium, Manganese, and Aluminum on Growth of Rhizobia in Acid Media. Soil Science Society of America Journal, 43(3): 500-503. doi: 10.2136/sssaj1979.03615995004300030014x
      Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London, 171-178.
      Mikkelsen, R.L., Haghnia, G.H., Page, A.L., et al., 1988. The Influence of Selenium, Salinity, and Boron on Alfalfa Tissue Composition and Yield. Journal of Environmental Quality, 17(1): 85-88. doi: 10.2134/jeq1988.00472425001700010012x
      Minarik, C.E., Shive, J.W., 1939. The Effect of Boron in the Substrate on Calcium Accumulation by Soybean Plants. American Journal of Botany, 26(10): 827-831. doi: 10.1002/j.1537-2197.1939.tb09363.x
      Redondo-Go'mez, S., Andrades-Moreno, L., Naranjo, E.M., et al., 2011. Synergic Effect of Salinity and Zinc Stress on Growth and Photosynthetic Responses of the Cordgrass, Spartina Densiflora. Journal of Experimental Botany, 62(15): 5521-5530. doi: 10.1093/jxb/err234
      Rengel, Z., 1992. The Role of Calcium in Salt Toxicity. Plant Cell Environment, 15(6): 625-632. doi: 10.1111/j.1365-3040.1992.tb01004.x
      Saleh, B., 2012. Effect of Salt Stress on Growth and Chlorophyll Content of Some Cultivated Cotton Varieties Grown in Syria. Communications in Soil Science and Plant Analysis, (43): 1976-1983. doi: 10.1080/00103624.2012.693229
      Wang, D., Kang, Y.H., Wan, S.Q., 2007. Distribution Characteristics of Different Salt Ions in Soil under Drip Irrigation with Saline Water. Transactions of the CSAE, 23(2): 83-87 (in Chinese with English abstract). doi: 1002-6819(2007)2-0083-05
      Wang, Z.M., Jin, M.G., He, Y.J., et al., 2012. Water Flow and Salt Transport in Cotton Field of Mulched Drip-Irrigation Using Dye Tracer. Earth Science—Journal of China University of Geosciences, 37(5): 1093-1100 (in Chinese with English abstract). doi: 10.3799/dqkx2012.116
      Wu, Z.D., Wang, Q.J., 2010. Effect on Both Soil Infiltration Characteristics and Ion Mobility Features by Mineralization Degree of Infiltration Water. Transactions of the Chinese Society for Agricultural Machinery, 41(7): 64-69 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1298.2010.07.014
      Xin, C.S., Tang, W., Wang, H.Z., et al., 2002. Responses of Seedling Growth of Lumian 14 to NaCl Stress and Effects of Treatments with Microelement and Hormone. Cotton Science, 14(2): 108-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-7807.2002.02.010
      Yermiyahu, U., Ben-Gal, A., Keren, R., et al., 2008. Combined Effect of Salinity and Excess Boron on Plant Growth and Yield. Plant Soil, 304(1-2): 73-87. doi: 10.1007/s11104-007-9522-z
      陈德明, 俞仁培, 1996. 作物相对耐盐性的研究——Ⅱ. 不同栽培作物的耐盐性差异. 土壤学报, 33(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB602.001.htm
      陈静生, 邓宝山, 陶澍, 等, 1990. 环境地球化学. 北京: 海洋出版社, 140.
      董合忠, 2010. 盐碱地棉花栽培学. 北京: 科学出版社, 77.
      郭文琦, 卞曙光, 张培通, 等, 2012. 江苏沿海滩涂盐碱地植棉高产品种产量及形成特征分析. 江西农业学报, 24(9): 15-18. doi: 10.3969/j.issn.1001-8581.2012.09.004
      何雨江, 汪丙国, 王在敏, 等, 2010. 棉花微咸水膜下滴灌灌溉制度的研究. 农业工程学报, 26(7): 14-20. doi: 10.3969/j.issn.1002-6819.2010.07.003
      王丹, 康跃虎, 万书勤, 2007. 微咸水滴灌条件下不同盐分离子在土壤中的分布特征. 农业工程学报, 23 (2): 83-87. doi: 10.3321/j.issn:1002-6819.2007.02.016
      王在敏, 靳孟贵, 何雨江, 等, 2012. 基于染色示踪的膜下滴灌水盐运移规律. 地球科学——中国地质大学学报, 37(5): 1093-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205025.htm
      吴忠东, 王全九, 2010. 入渗水矿化度对土壤入渗特征和离子迁移特性的影响. 农业机械学报, 41 (7): 64-69. doi: 10.3969/j.issn.1000-1298.2010.07.014
      辛承松, 唐薇, 王洪征, 等, 2002. 鲁棉14幼苗生长对氯化钠胁迫的反应及微量元素、激素处理的效应. 棉花学报, 14(2): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXB200202009.htm
    • 加载中
    图(5) / 表(8)
    计量
    • 文章访问数:  3317
    • HTML全文浏览量:  914
    • PDF下载量:  427
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-09-26
    • 刊出日期:  2014-06-15

    目录

      /

      返回文章
      返回