• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    莺歌海盆地流体垂向输导体系及其对天然气成藏控制作用

    赵宝峰 陈红汉 孔令涛 王倩茹 刘睿

    赵宝峰, 陈红汉, 孔令涛, 王倩茹, 刘睿, 2014. 莺歌海盆地流体垂向输导体系及其对天然气成藏控制作用. 地球科学, 39(9): 1323-1332. doi: 10.3799/dqkx.2014.114
    引用本文: 赵宝峰, 陈红汉, 孔令涛, 王倩茹, 刘睿, 2014. 莺歌海盆地流体垂向输导体系及其对天然气成藏控制作用. 地球科学, 39(9): 1323-1332. doi: 10.3799/dqkx.2014.114
    Zhao Baofeng, Chen Honghan, Kong Lingtao, Wang Qianru, Liu Rui, 2014. Vertical Migration System and Its Control on Natural Gas Accumulation in Yinggehai Basin. Earth Science, 39(9): 1323-1332. doi: 10.3799/dqkx.2014.114
    Citation: Zhao Baofeng, Chen Honghan, Kong Lingtao, Wang Qianru, Liu Rui, 2014. Vertical Migration System and Its Control on Natural Gas Accumulation in Yinggehai Basin. Earth Science, 39(9): 1323-1332. doi: 10.3799/dqkx.2014.114

    莺歌海盆地流体垂向输导体系及其对天然气成藏控制作用

    doi: 10.3799/dqkx.2014.114
    基金项目: 

    "十二·五"国家科技重大专项 2011ZX05023-004-010

    详细信息
      作者简介:

      赵宝峰(1984-), 男, 博士研究生, 主要从事含油气盆地分析研究.E-mail: zhaobaofengxo@163.com

      通讯作者:

      陈红汉, E-mail: hhchen@cug.edu.cn

    • 中图分类号: P618.13

    Vertical Migration System and Its Control on Natural Gas Accumulation in Yinggehai Basin

    • 摘要: 垂向输导体系主控下的热流体活动是莺歌海盆地重要的地质特征之一, 决定了盆内独特的油气成藏过程.依据地震剖面综合解释、三维地震属性提取和岩石薄片观察, 分析了流体垂向输导体系的构成要素, 并利用PetroMod v11进行2D盆地数值模拟, 定量化计算了自源超压和传导超压的大小, 获得以下主要认识: (1)底辟伴生断裂和水力破裂是东方区最主要的2种垂向输导要素, 且在垂向上存在分异性, 深部流体输导以水力破裂为主, 浅层输导以底辟伴生断裂为主; (2)流体的垂向输导刺穿了超压封存箱并导致自源超压面在盆地中央抬升近2 000 m, 现今盆地东方区3 000 m左右黄流组油气藏中剩余压力的90%来自传导型超压; (3)盆内存在2个有利天然气聚集带: 箱顶传导常压带和箱内自源-传导超压带, 其中后者天然气藏受水力破裂输导控制, 具有流体输导高效且距离烃源灶近的优势, 是盆地内最有勘探潜力的天然气聚集带.

       

    • 图  1  莺歌海盆地底辟与天然气藏分布(a)和沉积充填概况(b)

      图a中底辟位置和沉积充填参考Xie et al.(2003)

      Fig.  1.  Distribution of diapis (a) and petroleum pools in the Yinggehai Basin (b)

      图  2  垂向流体输导体系的2D地震解释、3D均方根振幅属性水平切片

      Fig.  2.  2D cross section interpretation and 3D root mean-square amplitude attributes of vertical migration systems

      图  3  水力破裂形成的微裂缝

      a.微裂缝被方解石充填, DF119井, 1 413.5 m;b.流体侵入裂缝被沥青充填, DF1322井, 3 134.9 m

      Fig.  3.  Photomicrographs showing micro-fractures of hydro-fracturing type

      图  4  2D超压数值模拟地质模型(a)和剩余压力计算结果(b)

      Fig.  4.  2D overpressure geological modeling (a) and computed results of excessive pressure (b)

      图  5  地层界面及自源和传导超压顶面埋深连井剖面

      Fig.  5.  Connecting-well section of sequence boundary, diffused and conductive overpressure surface depth

      图  6  实测地层压力和岩性关系

      Fig.  6.  Relationship between measured layer pressure and lithology

      图  7  典型油气藏成藏要素空间分布(a)及其与2类天然气气聚集带的关系示意(b)

      Fig.  7.  Relationship between typical reservoir accumulation factors distribution (a) and two kinds of gas accumulation zone (b)

      表  1  不同地区代表井压力计算结果

      Table  1.   Calculated pressure results of typical wells from different locations

      区域 井号/深度(m) 地层压力P(MPa) 静水压力Ph(MPa) 自源超压△Pe(MPa) 传导超压△Pt(MPa) Pt/P Pt/Ph Pt/(△Pe+△Pt)
      临高区 LG2011/3019 29.35 29.21 0.09 0.05 0.002 0.002 0.36
      岭头 LT3411/2937 28.32 28.24 0.04 0.04 0.001 0.001 0.50
      东方区 DF1321/3088 53.34 31.72 1.70 19.92 0.370 0.630 0.92
      DF1114/2939 54.53 30.01 1.62 22.90 0.420 0.760 0.93
      DF111/2580 52.82 26.59 1.51 24.72 0.470 0.930 0.94
      DF1111/2785 55.80 28.51 1.58 25.71 0.460 0.900 0.94
      乐东区 LD2217/2187 34.48 22.52 1.14 10.82 0.310 0.480 0.90
      LD1511/2450 33.65 25.09 1.21 7.35 0.220 0.290 0.86
      下载: 导出CSV
    • Cosgrove, J.W., 2001. Hydraulic Fracturing during the Formation and Deformation of a Basin: A Factor in the Dewatering of Low-Permeability Sediments. AAPG Bulletin, 85(4): 737-748. doi: 10.1306/8626C997-173B-11D7-8645000102C1865D
      Danesh, A., 1998. PVT and Phase Behaviour of Petroleum Reservoir Fluids (47). Elsevier, Amsterdam.
      Delaney, P.T., Pollard, D.D., Ziony, J.I., et al., 1986. Field Relations between Dikes and Joints: Emplacement Processes and Paleostress Analysis. Journal of Geophysical Research: Solid Earth (1978-2012), 91(B5): 4920-4938. doi: 10.1029/JB091iB05p04920
      Dong, W.L., Huang, B.J., 1999. Heterogeneity of Natural Gases and the Episodic Charging Process: A Case Study for Dongfang 1-1 Gas Field, Yinggehai Basin. Petroleum Exploration and Development, 26(2): 35-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK902.004.htm
      Engelder, T., Lash, G.G., 2008. Marcellus Shale Play's Vast Resource Potential Causing Big Stir in Appalachia. The American Oil and Gas Report.
      Finkbeiner, T., Zoback, M., Flemings, P., et al., 2001. Stress, Pore Pressure, and Dynamically Constrained Hydrocarbon Columns in the South Eugene Island 330 Field, Northern Gulf of Mexico. AAPG Bulletin, 85(6): 1007-1031. doi: 10.1306/8626CA55-173B-11D7-8645000102C1865D
      Fowler, S.R., Mildenhall, J., Zalova, S., et al., 2000. Mud Volcanoes and Structural Development on Shah Deniz. Journal of Petroleum Science and Engineering, 28(4): 189-206. doi: 10.1016/S0920-4105(00)0078-4
      Gong, Z.S., Li, S.T., Xie, T.J., et al., 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Science Press, Beijing (in Chinese).
      Grauls, D.J., Baleix, J.M., 1994. Role of Overpressures and In-Situ Stresses in Fault-Controlled Hydrocarbon Migration: A Case Study. Marine and Petroleum Geology, 11(6): 734-742. doi: 10.1016/0264-8172(94)90026-4
      Hantschel, T., Kauerauf, A.I., 2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer-Verlag, Heidelberg. doi: 10.1007/978-3-540-72318-9
      Hao, F., Dong, W.L., Zou, H.Y., et al., 2003. Overpressure Fluid Flow and Rapid Accumulation of Natural Gas in Yinggehai Basin. Acta Petrolei Sinica, 24(6): 7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200306002.htm
      Hao, F., Li, S.T., Sun, Y.C., et al., 1996. Characteristics and Origin of the Gas and Condensate in the Yinggehai Basin, Offshore South China Sea: Evidence for Effects of Overpressure on Petroleum Generation and Migration. Organic Geochemistry, 24(3): 363-375. doi: 10.1016/0146-6380(96)00009-5
      He, J.X., Yao, Y.J., Liu, H.L., et al., 2007. Migration and Accumulation Characteristics and Resource Potential of Crust-Derived Inorganic CO2 in the Yinggehai Basin, Northern South China Sea. Geology in China, 34(5): 887-893 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200705015.htm
      He, L.J., Xiong, L.P., Wang, J.Y., et al., 2000. The Numerical Modeling of Tectonic Development in the Yinggehai Basin. Science in China (Series D), 30(4): 415-419 (in Chinese).
      Heppard, P.D., Cander, H.S., Eggertson, E.B., 1998. Abnormal Pressure and the Occurrence of Hydrocarbons off the East Coast of Trinidad, West Indies. In: Law, B.E., Ulmishek, G.F., Slavin, V.I., eds., Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir, 70: 215-246.
      Holland, D.S., Leedy, J.B., Lammlein, D.R., 1990. Eugene Island Block 330 Field-USA, Offshore Louisiana. In: Beaumont, E.A., Foster, N.H. eds., Structural Traps III, Tectonic Fold and Fault Traps. AAPG Treatise of Petroleum Geology Atlas of Oil and Gas Fields, 103-143.
      Huang, B., Xiao, X., Li, X., 2003. Geochemistry and Origins of Natural Gases in the Yinggehai and Qiongdongnan Basins, Offshore South China Sea. Organic Geochemistry, 34(7): 1009-1025. doi: 10.1016/S0146-6380(03)00036-6
      Hurst, A., Scott, A., Vigorito, M., 2011. Physical Characteristics of Sand Injectites. Earth-Science Reviews, 106(3): 215-246. doi: 10.1016/j.earscirev.2011.02.004
      Hustoft, S., Mienert, J., Bünz, S., et al, 2007. High-Resolution 3D-Seismic Data Indicate Focussed Fluid Migration Pathways above Polygonal Fault Systems of the Mid-Norwegian Margin. Marine Geology, 245(1): 89-106. doi: 10.1016/j.margeo.2007.07.004
      Luo, X., Dong, W., Yang, J., et al., 2003. Overpressuring Mechanisms in the Yinggehai Basin, South China Sea. AAPG Bulletin, 87(4): 629-645. doi: 10.1306/10170201045
      Luo, X., Vasseur, G., 1992. Contributions of Compaction and Aquathermal Pressuring to Geopressure and the Influence of Environmental Conditions (1). AAPG Bulletin, 76(10): 1550-1559. doi: 10.1306/bdff8a42-1718-11d7-8645000102c1865d
      Luo, X., Vasseur, G., 1996. Geopressuring Mechanism of Organic Matter Cracking: Numerical Modeling. AAPG Bulletin, 80(6): 856-874. http://aapgbull.geoscienceworld.org/content/80/6/856
      Lü, M., 2002. A New Discussion on Lowstand Deposition Models in Ying-Qiong Basin. China Offshore Oil and Gas (Geology), 16(4): 221-230 (in Chinese with English abstract). http://www.researchgate.net/publication/284579885_A_new_discussion_on_lowstand_deposition_models_in_Ying-Qiong_Basin
      Prior, D.B., Doyle, E.H., Kaluza, M.J., 1989. Evidence for Sediment Eruption on Deep Sea Floor, Gulf of Mexico. Science, 243(4890): 517-519. doi: 10.1126/science.243.4890.517
      Ren, J.Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract). http://europepmc.org/abstract/MED/13666374
      Roberts, S.J., Nunn, J.A., 1995. Episodic Fluid Expulsion from Geopressured Sediments. Marine and Petroleum Geology, 12(2): 195-204. doi: 10.1016/0264-8172(95)92839-O
      Sagy, A., Reches, Z., Roman, I., 2001. Dynamic Fracturing: Field and Experimental Observations. Journal of Structural Geology, 23(8): 1223-1239. doi: 10.1016/S0191-8141(00)00190-5
      Seth, L.H., Gading, M., Wensaas, L., 2009. Hydrocarbon Leakage Interpreted on Seismic Data. Marine and Petroleum Geology, 26(7): 1304-1319. doi: 10.1016/j.marpetgeo.2008.09.008
      Swarbrick, R.E., Osborne, M.J., Yardley, G.S., 2002. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. In: Hoffmann, A.R., Bowers, G.L., eds., Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir, 76: 1-12.
      Walderhaug, O., Bjørkum, P.A., Nadeau, P.H., et al., 2001. Quantitative Modelling of Basin Subsidence Caused by Temperature-Driven Silicia Dissolution and Reprecipitation. Petroleum Geoscience, 7(2): 107-113. doi: 10.1144/petgeo.7.2.107
      Wang, Z.F., Hu, D.S., 1999. Prospecting for Giant Gas Fields in the Central Mud Diapir Structure Belt in Yinggehai Basin. Natural Gas Industry, 19(1): 28-30 (in Chinese with English abstract). http://www.researchgate.net/publication/291979723_Prospecting_for_giant_gas_fields_in_the_central_mud_diapir_structure_belt_in_Yinggehai_Basin
      Wang, Z.F., Huang, B.J., 2008. Dongfang 1-1 Gas Field in the Mud Diapir Belt of the Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 25(4): 445-455. doi: 10.1016/j.marpetgeo.2008.01.004
      Weinberger, R., Lyakhovsky, V., Baer, G., et al., 2000. Damage Zones around En Echelon Dike Segments in Porous Sandstone. Journal of Geophysical Research: Solid Earth (1978-2012), 105(B2): 3115-3133. doi: 10.1029/1999JB900361
      Xie, X., Li, S., He, H., et al., 2003. Seismic Evidence for Fluid Migration Pathways from an Overpressured System in the South China Sea. Geofluids, 3(4): 245-253. doi: 10.1046/j.1468-8123.2003.00070.x
      Xie, X.N., Li, S.T., Dong, W.L., et al., 2001. Evidence for Episodic Expulsion of Hot Fluids along Faults near Diapiric Structures of the Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 18(6): 715-728. doi: 10.1016/S0264-8172(01)00024-1
      Xie, X.N., Li, S.T., Liu, X.F., 2006. The Hydrodynamics of Abnormal Pressure Basins. China University of Geosciences Press, Wuhan (in Chinese).
      Xie, Y.H., Liu, P., Huang, Z.L., 2012. Geological Conditions and Pooling Process of High-Temperature and Overpressure Natural Gas Reservoirs in the Yinggehai Basin. Natural Gas Industry, 32(4): 19-23 (in Chinese with English abstract). http://www.researchgate.net/publication/288393586_Geological_conditions_and_pooling_process_of_high-temperature_and_overpressure_natural_gas_reservoirs_in_the_Yinggehai_Basin
      Ye, J.R., Wang, L.J., Shao, R., 1999. Fluid Dynamic Fields in Pool-Forming Dynamics of Oil and Gas. Oil & Gas Geology, 20(2): 86-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT902.021.htm
      Yin, X.L., Ma, Y.S., Feng, X.Y., et al., 2005. Thermal Stresses and Their Effects during the Deep Hot Fluids Penetrating upward in DF 1-1 Diapiric Area, Yinggehai Basin. Earth Science- Journal of China University of Geosciences, 30(1): 83-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200501011.htm
      Yun, J.W., Orange, D.L., Field, M.E., 1999. Subsurface Gas Offshore of Northern California and Its Link to Submarine Geomorphology. Marine Geology, 154: 357-368. doi: 10.1016/S0025-3227(98)00123-6
      Zhang, H.L., Pei, J.X., Zhang, Y.Z., et al., 2013. Overpressure Reservoirs in the Mid-Deep Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea. Petroleum Exploration and Development, 40(3): 284-293 (in Chinese with English abstract). http://www.researchgate.net/publication/281560509_Overpressure_reservoirs_in_the_mid-deep_Huangliu_Formation_of_the_Dongfang_area_Yinggehai_Basin_South_China_Sea
      Zhang, Q.M., Hao, F., 1997. Evolution and Hydrocarbon System in Ying-Qiong Basin. Science in China (Series D), 27(2): 149-154 (in Chinese). http://www.researchgate.net/publication/283432337_Evolution_and_hydrocarbon_system_in_Ying-Qiong_basin
      Zhang, Q.M., Liu, F.N., Yang, J.H., 1996. Overpressure System and Hydrocarbon Accumulation in the Yinggehai Basin. China Ofshore Oil and Gas (Geology), 10(2): 65-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD199602000.htm
      董伟良, 黄保家, 1999. 东方1-1气田天然气组成的不均一性与幕式充注. 石油勘探与开发, 26(2): 35-38. doi: 10.3321/j.issn:1000-0747.1999.02.010
      龚再升, 李思田, 谢泰俊, 等, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社.
      郝芳, 董伟良, 邹华耀, 等, 2003. 莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏. 石油学报, 24(6): 7-12. doi: 10.3321/j.issn:0253-2697.2003.06.002
      何家雄, 姚永坚, 刘海龄, 等, 2007. 南海北部莺歌海盆地壳源型非生物CO2运聚成藏特征与资源潜力. 中国地质, 34(5): 887-893. doi: 10.3969/j.issn.1000-3657.2007.05.016
      何丽娟, 熊亮萍, 汪集旸, 等, 2000. 莺歌海盆地构造热演化模拟研究. 中国科学(D辑), 30(4): 415-419. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004010.htm
      吕明, 2002. 莺-琼盆地低位沉积模式的新探讨. 中国海上油气(地质), 16(4): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200204000.htm
      任建业, 雷超, 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028
      王振峰, 胡代圣, 1999. 莺歌海盆地中央泥拱构造带大气田勘探方向. 天然气工业, 19(1): 28-30. doi: 10.3321/j.issn:1000-0976.1999.01.008
      解习农, 李思田, 刘晓峰, 2006. 异常压力盆地流体动力学. 武汉: 中国地质大学出版社.
      谢玉洪, 刘平, 黄志龙, 2012. 莺歌海盆地高温超压天然气成藏地质条件及成藏过程. 天然气工业, 32(4): 19-23. doi: 10.3787/j.issn.1000-0976.2012.04.005
      叶加仁, 王连进, 邵荣, 1999. 油气成藏动力学中的流体动力场. 石油与天然气地质, 20(2): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT902.021.htm
      殷秀兰, 马寅生, 冯向阳, 等, 2005. 莺歌海盆地东方1-1底辟区深部热流体穿层的热应力及其效应. 地球科学—中国地质大学学报, 30(1): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501011.htm
      张伙兰, 裴健翔, 张迎朝, 等, 2013. 莺歌海盆地东方区中深层黄流组超压储集层特征. 石油勘探与开发, 40(3): 284-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303006.htm
      张启明, 郝芳, 1997. 莺-琼盆地演化与含油气系统. 中国科学(D辑), 27(2): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702009.htm
      张启明, 刘福宁, 杨计海, 1996. 莺歌海盆地超压体系与油气聚集. 中国海上油气(地质), 10(2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199602000.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3141
    • HTML全文浏览量:  976
    • PDF下载量:  207
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-03-07
    • 刊出日期:  2014-09-01

    目录

      /

      返回文章
      返回