Forecasting of Pressures Required in Tension Fracture of Fault Rock and Suggestions for Safe Production in Oilfield: An Example from Faults Controlling Oil Accumulation of N1m1 in Qinhuangdao 33-1S and Qinhuangdao 33-2 Oilfields
-
摘要: 为了确保秦皇岛33-1南和33-2明下段油田的安全生产, 在实测围岩抗压强度和区域应力场特征研究的基础上, 采用把断层岩看作倾斜岩层, 再与围岩对比的方法, 建立了一套断层岩发生张性破裂所需压力的预测方法, 并利用该方法对秦皇岛33-1南和33-2油田主要目的层——明下段控藏断裂断层岩发生张性破裂所需压力进行了预测.结果表明: 秦皇岛33-1南和33-2油田明下段控藏断裂断层岩发生张性破裂所需压力为25.6~31.3 MPa, 平均为29.4 MPa.如果油田开发过程中注水压力经过从注水井至断裂带压力损失后仍小于25.6~31.3 MPa时, 秦皇岛33-1南和33-2明下段油田可安全注水生产; 否则将造成该油田中的断裂发生张性破裂, 油沿断裂向上逸散至海底.Abstract: To ensure safe production of Qinhuangdao 33-1S and 33-2 oilfields, based on the study of test of crushing resistance intensity and regional stress characteristics, a method forecasting pressure required in tension fracture of fault rock is proposed in this paper by using fault rock as a dip rock and contrasting between fault rock and surrounding rock. The new method is tried in forecasting pressures required in tension fracture of fault rock of faults controlling oil accumulation of N1m1 in Qinhuangdao 33-1S and Qinhuangdao 33-2 oilfields. Results indicate that pressures required in tension fracture of fault rock of faults controlling oil accumulation of N1m1 is 25.6-31.3 MPa, with the average value of 29.4 MPa. It is found that safe production can be guaranteed in Qinhuangdao 33-1S and Qinhuangdao 33-2 oilfields if water injecting pressure is smaller than 25.6-31.3 MPa after it is reduced from water injection well to fault. Otherwise, oil might escape to sea bottom from fault.
-
Key words:
- fault rock /
- tension fracture /
- water injecting pressure /
- forecasting method /
- surrounding rock /
- Qinhuangdao oilfield
-
表 1 QHD33-1-1井10块岩心样品抗压强度实验结果
Table 1. Experiment result of crushing resistance intensity of 10 cores in well QHD33-1-1
样号 Z(m) Sc(MPa) μ B(%) S(MPa) Pw(MPa) St(MPa) δ2(MPa) δ3(MPa) δ1(MPa) K Pf(MPa) 1 1 240.2 67.9 0.12 35.0 25.7 12.2 5.7 29.2 21.8 26.0 0.59 28.21 2 1 240.5 68.5 0.12 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.58 28.27 3 1 240.6 68.2 0.11 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.60 28.25 4 1 240.7 68.2 0.13 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.55 28.25 5 1 240.8 68.2 0.13 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.56 28.25 6 1 241.1 68.2 0.13 35.0 25.7 12.2 5.7 29.2 21.8 26.1 0.57 28.26 7 1 269.8 22.6 0.12 28.0 26.3 12.5 1.9 29.9 22.4 26.7 0.58 24.95 8 1 269.7 22.6 0.12 28.0 26.3 12.5 1.9 29.9 22.4 26.7 0.58 24.95 9 1 270.1 22.6 0.14 28.0 26.4 12.5 1.9 29.9 22.4 26.7 0.54 24.96 10 1 316.3 22.6 0.14 32.0 27.3 13.0 1.9 31.0 23.2 27.6 0.55 26.03 表 2 秦皇岛33-1南和33-2油田明下段控藏断裂断层岩发生张性破裂所需压力预测结果
Table 2. Forecasting of pressure required in tension fracture of fault rock of faults controlling oil accumulation of N1m1 in Qinhuangdao 33-1S and Qinhuangdao 33-2 oilfields
区块 砂体名称 控圈断裂 控砂范围 SGR(%) 倾角(°) Ac(3.28 μs/m) Pf(Mpa) 压力系数 33-1S 1-3-NmI-1062 F38 -1 051.0 -1 075.5 49.1 61.1 35.6 30.6 3.0 F14 -1 043.0 -1 055.5 69.7 59.9 24.4 30.8 3.0 F15 -1 035.0 -1 045.0 85.6 58.1 15.2 31.0 3.1 1-3-NmI-1098 F33 -1 064.0 -1 078.0 85.5 60.1 23.9 30.6 2.9 F12 -1 082.5 -1 090.0 66.7 60.2 37.5 30.3 2.8 F22 -1 079.0 -1 085.0 64.7 56.3 37.3 30.3 2.9 F19 -1 077.0 -1 081.0 78.1 58.3 31.0 30.4 2.9 1-3-NmI-1156 F38 -1 149.0 -1 161.0 39.7 61.1 69.0 29.2 2.6 F19 -1 159.0 -1 163.0 77.8 58.3 55.6 29.3 2.6 F15 -1 157.0 -1 166.0 41.3 58.1 70.7 29.1 2.6 1S-1-NmI-1061 F12 -1 037.0 -1 043.0 66.5 60.2 24.0 30.9 3.0 F15 -1 039.5 -1 053.5 76.7 58.1 20.4 30.9 3.0 1S-3-NmI-1160 F28 -1 130.5 -1 143.0 68.9 59.1 50.9 29.6 2.7 F30 -1 133.0 -1 155.0 48.9 59.5 60.3 29.5 2.7 3-5-NmI-1084 F14 -1 048.0 -1 063.5 88.8 59.9 17.7 30.9 3.0 F48 -1 042.0 -1 052.0 95.4 55.2 13.1 31.0 3.0 F8 -1 076.0 -1 081.0 60.8 58.8 38.1 30.3 2.9 F7 -1 071.0 -1 096.5 62.5 60.7 35.9 30.4 2.9 F16 -1 063.5 -1 071.0 55.7 58.8 36.6 30.5 2.9 F1 -1 079.0 -1 102.5 62.5 58.7 38.3 30.3 2.9 1-3-NmⅡ-1192 F14 -1 171.5 -1 187.0 52.8 59.9 70.1 29.0 2.5 1-3-NmⅡ-1226 F38 -1 215.5 -1 221.0 45.2 61.1 86.5 28.3 2.4 F32 -1 202.5 -1 213.0 58.8 59.7 76.8 28.6 2.4 F33 -1 211.0 -1 223.0 58.4 60.1 79.5 28.4 2.4 1S-2-NmⅡ-1237 F28 -1 176.5 -1 195.0 88.8 59.1 56.1 29.1 2.5 F30 -1 176.5 -1 205.0 87.5 59.5 56.7 29.1 2.5 F12 -1 209.0 -1 218.5 51.7 60.2 81.8 28.4 2.4 1S-2-NmⅡ-1292 F28 -1 267.0 -1 271.0 59.2 59.1 95.9 27.7 2.2 F30 -1 273.0 -1 281.5 68.1 59.5 93.9 27.6 2.2 1-3-NmⅢ-1334 F12 -1 313.0 -1 318.0 86.4 60.2 98.0 27.2 2.1 F30 -1 319.0 -1 323.0 84.7 59.5 100.5 27.1 2.1 33-2 2-1-NmI-1064 F8 -1 028.5 -1 046.0 86.1 58.8 13.0 31.1 3.1 F10 -1 028.5 -1 039.5 86.6 64.6 12.8 31.1 3.1 2-2-NmI-1064 F8 -1 012.2 -1 023.0 71.4 58.8 14.5 31.3 3.1 F10 -1 064.0 -1 076.5 56.9 64.6 36.2 30.5 2.9 F6 -1 058.0 -1 081.5 47.7 57.8 38.3 30.5 2.9 F1 -1 332.5 -1 345.0 77.3 58.7 107.7 26.9 2.1 2-1-NmI-1340 F8 -1 299.0 -1 302.0 91.0 58.8 91.8 27.4 2.2 F10 -1 299.0 -1 302.0 89.9 64.6 92.3 27.4 2.2 -
Ding, J.M., Liang, G.P., 1985. Stress Measurement by Hydraulic Fracturing in Oil-Wells of North China. Acta Seismologica Sinica, 7(4): 363-373 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198504001.htm Fu, G., Shi, J.J., Lü, Y.F., 2012. An Improvement in Quantitatively Studying Lateral Seal of Faults. Acta Petrolei Sinica, 33(3): 414-418 (in Chinese). http://www.researchgate.net/publication/287678101_An_improvement_in_quantitatively_studying_lateral_seal_of_faults Huang, R.Z., 1984. A Model for Predicting Formation Fracture Pressure. Journal of East China Petroleum Institute, 4: 335-347 (in Chinese). http://www.researchgate.net/publication/285299691_A_model_for_predicting_formation_fracture_pressure Huang, R.Z., Zhuang, J.J., 1986. A New Method of Predicting Fracture Pressure. Oil Drilling & Production Technology, 3: 1-14 (in Chinese). Li, M., Lian, Z.H., Chen, S.C., et al., 2009. Rock Mechanical Parametric Experiments and the Research of Formation Fracture Pressure Prediction. Oil Drilling & Production Technology, 31(5): 15-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZC200905007.htm Liu, Q.M., Li, W.P., Zeng, X.G., et al., 2007. Indoor Hydraulic Pressure Cracking Method to Test and Measure Critical Breaking Pressure and Water Resistance Coefficient of Rock Mass. Coal Science and Technology, 35(1): 85-87 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_coal-science-technology_thesis/0201216209968.html Liu, Z., Fu, G., Sun, Y.H., et al., 2012a. Comprehensive Evaluation of Fault Lateral Sealing Ability in Qijia-Yuangyanggou Area, Liaohe Depression. Journal of Central South University (Science and Technology), 43(4): 1394-1404 (in Chinese with English abstract). http://www.researchgate.net/publication/287872270_Comprehensive_evaluation_of_fault_lateral_sealing_ability_in_Qijia-Yuanyanggou_area_Liaohe_depression Liu, Z., Lü, Y. f., Fu, X.F., et al., 2012b. Quantitative Research on Lateral Seal Ability of Faults in Beier Depression. Joural of Jilin University (Earth Science Edition), 42(2): 353-361 (in Chinese with English abstract). http://www.researchgate.net/publication/287945245_Quantitative_research_on_lateral_seal_ability_of_faults_in_Beier_depression Lü, Y.F., Ma, F.J., 2003. Controlling Factors and Classification of Fault Seal. Journal of Jilin University (Earth Science Edition), 33(2): 163-166 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247978560.html Wang, H., Fan, H.H., 2009. An Estimation Method of Formation Fracture Pressure. Xinjiang Petroleum Science & Technology, 19(4): 11-13 (in Chinese). Yielding, G., 2002. Shale Gouge Ratio-Calibration by Geohistory. In: Koestler, A.G., Hunsdale, R., eds., Hydrocarbon Seal Quantification. NPF Special Publication, 11: 1-15. doi: 10.1016/S0928-8937(02)80003-0 Zhou, N.Y., Yang, Z.Z., 2011. Overview on Pressure Prediction of Formation Fracture. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 13(1): 36-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CQSG201101013.htm 丁健民, 梁国平, 1985. 唐山、天津和沧州地区的油井水力压裂应力测量. 地震学报, 7(4): 363-373. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198504001.htm 付广, 史集建, 吕延防, 2012. 断层侧向封闭性定量研究方法的改进. 石油学报, 33(3): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203010.htm 黄荣樽, 庄锦江, 1986. 一种新的地层破裂压力预测方法. 石油钻采工艺, 3: 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC198603000.htm 黄荣樽, 1984. 地层破裂压力预测模式的探讨. 华东石油学院学报, 4: 335-347. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htm 李敏, 练章华, 陈世春, 等, 2009. 岩石力学参数试验与地层破裂压力预测研究. 石油钻采工艺, 31(5): 15-18. doi: 10.3969/j.issn.1000-7393.2009.05.004 刘启蒙, 李文平, 曾先贵, 等, 2007. 室内水力压裂法测试岩体临界破裂压力及阻水系数. 煤炭科学技术, 35(1): 85-87. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200701024.htm 刘哲, 付广, 孙永河, 等, 2012a. 辽河坳陷齐家-鸳鸯沟地区断层侧向封闭性综合评价. 中南大学学报(自然科学版), 43(4): 1394-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201204033.htm 刘哲, 吕延防, 付晓飞, 等, 2012b. 贝尔凹陷断层侧向封闭能力定量研究. 吉林大学学报(地球科学版), 42(2): 353-361. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202010.htm 吕延防, 马福建, 2003. 断层封闭性影响因素及类型划分. 吉林大学学报(地球科学版), 33(2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200302011.htm 王河, 樊洪海, 2009. 一种地层破裂压力的估算方法. 新疆石油科技, 19(4): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201103031.htm 周拿云, 杨兆中, 2011. 地层破裂压力预测技术综述. 重庆科技学院学报(自然科学版), 13(1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG201101013.htm